Skip to main content
Log in

How is the Two-Regime Stable Boundary Layer Reproduced by the Different Turbulence Parametrizations in the Weather Research and Forecasting Model?

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Five planetary-boundary-layer parametrizations of the Weather Research and Forecasting model are compared with respect to their ability to simulate the very stable and the weakly stable regimes of the stable boundary layer. This is performed for single column models where the large-scale mechanical forcing is represented by geostrophic wind speeds ranging from 0.5 to 12 m \(\hbox {s}^{-1}\). The performance of the models is assessed by contrasting the relationships they produce between the turbulence velocity scale and the mean wind speed, between potential temperature gradient and the mean wind speed, and between the flux and gradient Richardson numbers. The level-2.5 Mellor–Yamada–Nakanishi–Niino parametrization simulates the very stable regime the best, mainly because its heat eddy diffusivity decreases with respect to the momentum eddy diffusivity as the stability increases, while the same is not true for the other parametrizations considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acevedo OC, Costa FD, Degrazia GA (2012) The coupling state of an idealized stable boundary layer. Boundary-Layer Meteorol 145(1):211–228

    Article  Google Scholar 

  • Acevedo OC, Mahrt L, Puhales FS, Costa FD, Medeiros LE, Degrazia GA (2016) Contrasting structures between the decoupled and coupled states of the stable boundary layer. Q J R Meteorol Soc 142(695):693–702. https://doi.org/10.1002/qj.2693

    Article  Google Scholar 

  • Acevedo OC, Maroneze R, Costa FD, Puhales FS, Degrazia GA, Nogueira Martins LG, Soares de Oliveira PE, Mortarini L (2019) The nocturnal boundary layer transition from weakly to very stable. Part I: Observations. Q J R Meteorol Soc 145(725):3577–3592. https://doi.org/10.1002/qj.3642

    Article  Google Scholar 

  • André JC, Mahrt L (1982) The nocturnal surface inversion and influence of clear-air radiative cooling. J Atmos Sci 39(4):864–878

    Article  Google Scholar 

  • Baas P, van de Wiel BJ, van Meijgaard E, Vignon E, Genthon C, van der Linden SJ, de Roode SR (2019) Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica. Q J R Meteorol Soc 145(720):930–946

    Article  Google Scholar 

  • Battisti A, Acevedo OC, Costa FD, Puhales FS, Anabor V, Degrazia GA (2017) Evaluation of nocturnal temperature forecasts provided by the Weather Research and Forecast model for different stability regimes and terrain characteristics. Boundary-Layer Meteorol 162(3):523–546

    Article  Google Scholar 

  • Bou-Zeid E, Gao X, Ansorge C, Katul GG (2018) On the role of return to isotropy in wall-bounded turbulent flows with buoyancy. J Fluid Mech 856:61–78

    Article  Google Scholar 

  • Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Wea Rev 117(8):1872–1890

    Article  Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the community atmosphere model. J Clim 22(12):3422–3448. https://doi.org/10.1175/2008JCLI2556.1

    Article  Google Scholar 

  • Canuto VM, Cheng Y, Howard AM, Esau IN (2008) Stably stratified flows: a model with no Ri(cr). J Atmos Sci 65(7):2437–2447. https://doi.org/10.1175/2007JAS2470.1

    Article  Google Scholar 

  • Chen SH, Sun WY (2002) A one-dimensional time dependent cloud model. J Met Soc Japan 80(1):99–118. https://doi.org/10.2151/jmsj.80.99

    Article  Google Scholar 

  • Cheng Y, Brutsaert W (2005) Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114(3):519–538

    Article  Google Scholar 

  • Costa FD, Acevedo OC, Mombach JC, Degrazia GA (2011) A simplified model for intermittent turbulence in the nocturnal boundary layer. J Atmos Sci 68(8):1714–1729

    Article  Google Scholar 

  • Costa FD, Acevedo OC, Medeiros LE, Maroneze R, Puhales FS, Carvalho AD Jr, Camponogara LF, dos Santos DM, Mortarini L (2020) Stable boundary layer regimes in single-column models. J Atmos Sci 77(6):2039–2054. https://doi.org/10.1175/JAS-D-19-0218.1

    Article  Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld GJ, Svensson G, Taylor P, Weng W, Wunsch S, Xu KM (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118(2):273–303

    Article  Google Scholar 

  • Dias-Júnior CQ, Sá LD, Marques Filho EP, Santana RA, Mauder M, Manzi AO (2017) Turbulence regimes in the stable boundary layer above and within the Amazon Forest. Agric For Meteorol 233:122–132

    Article  Google Scholar 

  • Dimitrova R, Silver Z, Zsedrovits T, Hocut CM, Leo LS, Di Sabatino S, Fernando HJS (2016) Assessment of planetary boundary-layer schemes in the Weather Research and Forecasting mesoscale model using MATERHORN field data. Boundary-Layer Meteorol 159(3):589–609. https://doi.org/10.1007/s10546-015-0095-8

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • Holdsworth AM, Monahan AH (2019) Turbulent collapse and recovery in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget. J Atmos Sci 76(5):1307–1327

    Article  Google Scholar 

  • Janjić ZI (1994) The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 122(5):927–945

    Article  Google Scholar 

  • Janjić ZI (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. https://repository.library.noaa.gov/view/noaa/11409

  • Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Wea Rev 140(3):898–918

    Article  Google Scholar 

  • Katul GG, Porporato A, Shah S, Bou-Zeid E (2014) Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys Rev E 89(023):007. https://doi.org/10.1103/PhysRevE.89.023007

    Article  Google Scholar 

  • Kitamura Y (2010) Modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) model for the stable stratification case. J Met Soc Japan 88(5):857–864

    Article  Google Scholar 

  • Klein PM, Hu XM, Shapiro A, Xue M (2016) Linkages between boundary-layer structure and the development of nocturnal low-level jets in Central Oklahoma. Boundary-Layer Meteorol 158(3):383–408

    Article  Google Scholar 

  • Lan C, Liu H, Li D, Katul GG, Finn D (2018) Distinct turbulence structures in stably stratified boundary layers with weak and strong surface shear. J Geophys Res 123(15):7839–7854

    Article  Google Scholar 

  • Lapo K, Nijssen B, Lundquist JD (2019) Evaluation of turbulence stability schemes of land models for stable conditions. J Geophys Res 124(6):3072–3089. https://doi.org/10.1029/2018JD028970

    Article  Google Scholar 

  • Mahrt L (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88(2):255–278. https://doi.org/10.1023/A:1001171313493

    Article  Google Scholar 

  • Mahrt L (2009) Characteristics of submeso winds in the stable boundary layer. Boundary-Layer Meteorol 130(1):1–14

    Article  Google Scholar 

  • Mahrt L (2010) Variability and maintenance of turbulence in the very stable boundary layer. Boundary-Layer Meteorol 135(1):1–18

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Ann Rev Fluid Mech 46(1):23–45. https://doi.org/10.1146/annurev-fluid-010313-141354

    Article  Google Scholar 

  • Mahrt L, Gamage N (1987) Observations of turbulence in stratified flow. J Atmos Sci 44(7):1106–1121

    Article  Google Scholar 

  • Maroneze R, Acevedo OC, Costa FD, Puhales FS, Demarco G, Mortarini L (2019a) The nocturnal boundary layer transition from weakly to very stable. Part II: Numerical simulation with a second-order model. Q J R Meteorol Soc 145(725):3593–3608. https://doi.org/10.1002/qj.3643

    Article  Google Scholar 

  • Maroneze R, Acevedo OC, Costa FD, Sun J (2019b) Simulating the regime transition of the stable boundary layer using different simplified models. Boundary-Layer Meteorol 170(2):305–321. https://doi.org/10.1007/s10546-018-0401-3

    Article  Google Scholar 

  • McNider RT, England DE, Friedman MJ, Shi X (1995) Predictability of the stable atmospheric boundary layer. J Atmos Sci 52(10):1602–1614

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31(7):1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,682. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  • Monahan AH, Rees T, He Y, McFarlane N (2015) Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J Atmos Sci 72(8):3178–3198. https://doi.org/10.1175/JAS-D-14-0311.1

    Article  Google Scholar 

  • Mukul Tewari N, Tewari M, Chen F, Wang W, Dudhia J, LeMone M, Mitchell K, Ek M, Gayno G, Wegiel J et al (2004) Implementation and verification of the unified NOAH land surface model in the WRF model (formerly paper number 17.5). In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15

  • Nakanishi M (2001) Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Meteorol 99(3):349–378. https://doi.org/10.1023/A:1018915827400

    Article  Google Scholar 

  • Nakanishi M, Niino H (2006) An improved Mellor–Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol 119(2):397–407. https://doi.org/10.1007/s10546-005-9030-8

    Article  Google Scholar 

  • Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Met Soc Japan 87(5):895–912. https://doi.org/10.2151/jmsj.87.895

    Article  Google Scholar 

  • Ohya Y (2001) Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol 98(1):57–82. https://doi.org/10.1023/A:1018767829067

    Article  Google Scholar 

  • Olson JB, Kenyon JS, Angevine W, Brown JM, Pagowski M, Sušelj K et al (2019) A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW. https://repository.library.noaa.gov/view/noaa/19837

  • Pardyjak ER, Monti P, Fernando HJS (2002) Flux Richardson number measurements in stable atmospheric shear flows. J Fluid Mech 459:307–316. https://doi.org/10.1017/S0022112002008406

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83(4):555–582

    Article  Google Scholar 

  • Powers JG, Klemp JB, Skamarock WC, Davis CA, Dudhia J, Gill DO, Coen JL, Gochis DJ, Ahmadov R, Peckham SE, Grell GA, Michalakes J, Trahan S, Benjamin SG, Alexander CR, Dimego GJ, Wang W, Schwartz CS, Romine GS, Liu Z, Snyder C, Chen F, Barlage MJ, Yu W, Duda MG (2017) The weather research and forecasting model: overview, system efforts, and future directions. Bull Am Meteorol Soc 98(8):1717–1737

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note-475+ STR. https://opensky.ucar.edu/islandora/object/technotes:500

  • Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63(3):920–935. https://doi.org/10.1175/JAS3654.1

    Article  Google Scholar 

  • Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Boundary-Layer Meteorol 117(2):231–257. https://doi.org/10.1007/s10546-004-6848-4

    Article  Google Scholar 

  • Sun J, French JR (2016) Air-sea interactions in light of new understanding of air-land interactions. J Atmos Sci 73(10):3931–3949. https://doi.org/10.1175/JAS-D-15-0354.1

    Article  Google Scholar 

  • Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during “CASES-99”. J Atmos Sci 69(1):338–351

    Article  Google Scholar 

  • Svensson G, Holtslag AAM, Kumar V, Mauritsen T, Steeneveld GJ, Angevine WM, Bazile E, Beljaars A, de Bruijn EIF, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second “GABLS” experiment. Boundary-Layer Meteorol 140(2):177–206

    Article  Google Scholar 

  • Tastula EM, Galperin B, Dudhia J, LeMone MA, Sukoriansky S, Vihma T (2015) Methodical assessment of the differences between the QNSE and MYJ PBL schemes for stable conditions. Q J R Meteorol Soc 141(691):2077–2089. https://doi.org/10.1002/qj.2503

    Article  Google Scholar 

  • van de Wiel BJH, Ronda RJ, Moene AF, De Bruin HAR, Holtslag AAM (2002) Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J Atmos Sci 59(5):942–958

    Article  Google Scholar 

  • van de Wiel BJH, Moene AF, Jonker HJJ, Baas P, Basu S, Donda JMM, Sun J, Holtslag AAM (2012) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69(11):3116–3127. https://doi.org/10.1175/JAS-D-12-0107.1

    Article  Google Scholar 

  • van de Wiel BJH, Vignon E, Baas P, van Hooijdonk IGS, van der Linden SJA, Antoon van Hooft J, Bosveld FC, de Roode SR, Moene AF, Genthon C (2017) Regime transitions in near-surface temperature inversions: a conceptual model. J Atmos Sci 74(4):1057–1073. https://doi.org/10.1175/JAS-D-16-0180.1

    Article  Google Scholar 

  • van der Linden SJA, Baas P, van Hooft JA, van Hooijdonk IGS, Bosveld FC, van de Wiel BJH (2017) Local characteristics of the nocturnal boundary layer in response to external pressure forcing. J Appl Meteorol Climat 56(11):3035–3047. https://doi.org/10.1175/JAMC-D-17-0011.1

    Article  Google Scholar 

  • Vignon E, van de Wiel BJ, van Hooijdonk IG, Genthon C, van der Linden SJ, van Hooft JA, Baas P, Maurel W, Traullé O, Casasanta G (2017) Stable boundary-layer regimes attransitions in the wintertime near-surface temperature inversion at Dome C, Antarctica: observation and analysis. Q J R Meteorol Soc 143(704):1241–1253

    Article  Google Scholar 

  • Zilitinkevich S (1970) Non-local turbulent transport: pollution dispersion aspects of coherent structure of connective flows. WIT Transactions on Ecology and the Environment 9

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I, Esau I (2013) A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Boundary-Layer Meteorol 146(3):341–373

    Article  Google Scholar 

Download references

Acknowledgements

This study has been carried out within the scope of the Research & Development program of Brazilian energy sector, regulated by ANEEL (Agência Nacional de Energia Elétrica) with financial support from Eneva S.A.. RM and DNL graduate studies were supported by CAPES (Coordenaçâo de Aperfeiçoamento de Pessoal de Nível Superior). OCA and FDC have financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). CASES-99 data used in Fig. 1 are publicly available at ”https://doi.org/10.5065/D6ZS2TWW”. Karl Lapo and three anonymous reviewers provided valuable suggestions that improved the quality of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Maroneze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Numerical Constants

All numerical constants employed in the MYNN, MYJ, QNSE, UWBLS and BouLac parametrizations are presented in Table 4.

Table 4 Numerical constants employed by the PBL parametrizations

Appendix 2: The Mellor–Yamada–Janjic Parametrization

The numerical constants \(A_{S_M}\), \(B_{S_M}\),\(C_{S_M}\),\(D_{S_M}\),\(F_{S_M}\),\(G_{S_M}\),\(A_{S_H}\),\(B_{S_H}\) and \(C_{S_H}\) in Eqs. 1516 are given by

$$\begin{aligned} A_{S_M}= & {} -3A_1A_2\left( 3A_2+3B_2C_1+12A_1C_1-B2\right) ,\\ B_{S_M}= & {} A_1\left( 1-3C_1\right) ,\\ C_{S_M}= & {} 18A_1^2A_2\left( B_2-3A_2\right) ,\\ D_{S_M}= & {} 9A_1A_2^2\left( 12A_1+3B_2\right) ,\\ F_{S_M}= & {} 6A_1^2,\\ G_{S_M}= & {} 3A_2\left( 7A_1+B_2\right) ,\\ A_{S_H}= & {} 18A_1^2A_2C_1,\\ B_{S_H}= & {} 9A_1A_2^2,\\ C_{S_H}= & {} A_2, \end{aligned}$$

where the values of numerical constants \(A_1\), \(A_2\), \(B_1\), \(B_2\), and \(C_1\) are given the Appendix 1.

The MYJ PBL parametrization solves a linearized form of a prognostic equation for the ratio between the mixing length and TKE (Eqs. 2021). This linearization starts with Eq. 19 rewritten as

$$\begin{aligned} \frac{d}{dt}\left( \frac{l_K}{q}\right) =\frac{A\left( \frac{l_K}{q}\right) ^4 +B\left( \frac{l_K}{q}\right) ^2}{C\left( \frac{l_K}{q}\right) ^4 +D\left( \frac{l_K}{q}\right) ^2+1}-\frac{1}{B1}, \end{aligned}$$
(54)

where the right-hand side is defined as R. Its derivative with respect to \(l_t/q\) is defined as \(R'\), such that

$$\begin{aligned} \frac{dR}{d\left( l_K/q\right) }=R'=-2\frac{\left[ \left( AD-BC\right) \left( \frac{l_K}{q}\right) ^5+2A\left( \frac{l_K}{q}\right) ^3+B \left( \frac{l_K}{q}\right) \right] }{\left[ C\left( \frac{l_K}{q}\right) ^4 +D\left( \frac{l_K}{q}\right) ^2+1\right] ^2}. \end{aligned}$$
(55)

The functions A, B, C, and D are given by

$$\begin{aligned} A= & {} \left\{ \left[ -3A_1A_2\left( 3A_2+3B_2c_1+18A_1C_1-B2\right) \left( \beta g\right) \right] g_M -\left[ B_{S_H}\left( \beta g\right) ^2\right] g_H\right\} g_H, \\ B= & {} B_{S_M}g_M-\left( A_2\beta g\right) g_H,\\ C= & {} \left\{ \left[ C_{S_M}\left( \beta g\right) \right] g_M-\left[ D_{S_H}\left( \beta g\right) ^2\right] g_H\right\} g_H, \end{aligned}$$

and

$$\begin{aligned} D=F_{S_M}g_M-G_{S_H}\left( \beta g\right) g_H, \end{aligned}$$

where the dimensionless vertical gradients of mean wind speed and virtual temperature are defined as

$$\begin{aligned} g_M =\frac{G_M}{\frac{l_K^2}{q^2}}, \end{aligned}$$

and

$$\begin{aligned} g_H=\frac{G_H}{ \frac{l_K^2}{q^2}\beta g}. \end{aligned}$$

Equation 54 is linearized as

$$\begin{aligned} \frac{d\left( l_K/q\right) _{i+1}}{dt}=R_{i}+R'_{i} \left[ \left( \frac{l_K}{q}\right) _{i+1}-\left( \frac{l_K}{q}\right) _{i}\right] , \end{aligned}$$
(56)

whose solution is given by Eq. 21.

Equations 1922 do not solve TKE transport. It is estimated at a later step through Eq. 23, where coefficients \(C_r(z_i)\), \(R_Q(z_i)\) and \(C_M(z_i)\) are given by

$$\begin{aligned} C_R(z_{i})= & {} -DTZ(z_i)AK_q(z_{i}),\\ C_M= & {} C_R(z_{i-1})C_F(z_{i})+(AK_q(z_{i-1})+AK_q(z_{i}))DTZ(z_i)+1,\\ R_Q(z_i)= & {} R_Q(z_{i-1})C_F(z_i)+q^2(z_i),\\ AK_q(z_{i})= & {} \frac{5\sqrt{q^2(z_{i})}l_K(z_{i})}{z_{i+1}-z_{i+2}},\\ DTZ(z_i)= & {} \frac{2{\Delta } t}{z_{i}-z_{i+2}},\\ C_F= & {} \frac{-DTZ(z_i)AK_q(z_{i-1})}{C_M(z_{i-1})}. \end{aligned}$$

Appendix 3: The Mellor–Yamada–Nakanishi–Niino Level-2 model

Although no level-2 MYNN PBL parametrization is explicitly used in the present study, it is necessary to define its equations before showing those for levels 2.5 and 3.

As defined in Mellor and Yamada (1974, 1982), in level-2 parametrizations, the TKE is estimated through the balance between shear production, buoyant destruction and dissipation

$$\begin{aligned} q_2^2=b_1l_K^2\left\{ s_m\left[ \left( \frac{\partial {\overline{u}}}{\partial z}\right) ^2+\left( \frac{\partial {\overline{v}}}{\partial z}\right) ^2\right] +s_h\frac{g}{\varTheta }\frac{\partial {\overline{\theta }}_V}{\partial z}\right\} , \end{aligned}$$
(57)

where \(s_h\) and \(s_m\) are the stability functions for heat and momentum, respectively,

$$\begin{aligned} s_h=3a_2\left( g_1+g_2\right) \frac{Ri_{fc}-Ri_f}{1-Ri_f}, \end{aligned}$$
(58)

and

$$\begin{aligned} s_m=\frac{a_1}{a_2}\frac{f_1}{f_2}\frac{r_{f1}-Ri_f}{r_{f2}-Ri_f}s_h, \end{aligned}$$
(59)

which are functions of the level-2 flux Richardson number \(Ri_f\), defined as

$$\begin{aligned} Ri_f=\mathrm {min}\left[ ri1\left( Ri_g+r_{i2}-\sqrt{Ri_g^2-r_{i3}Ri_g+r_{i2}^2} \right) ,Ri_{fc}\right] , \end{aligned}$$
(60)

where \(Ri_g\) is the gradient Richardson number, and \(Ri_{fc}\) is the critical flux Richardson number

$$\begin{aligned} Ri_{fc}=\frac{g_1}{g_1+g_2}. \end{aligned}$$
(61)

The other quantities in Eqs. 5860 are numerical constants:

$$\begin{aligned} f_1= & {} b_1\left( g_1-c_1\right) +3a_2\left( 1-c_2\right) \left( 1-c_5\right) +2a_1\left( 1-c_2\right) ,\\ f_2= & {} b_1\left( g_1+g_2\right) -3a_1\left( 1-c_2\right) ,\\ r_{f1}= & {} \frac{b_1\left( g_1-c_1\right) }{f_1},\\ r_{f2}= & {} \frac{b_1g_1}{f_2},\\ r_{i1}= & {} \frac{1}{2}\frac{a_2}{a_1}\frac{f_2}{f_1},\\ r_{i2}= & {} r_{f1}\frac{a_1}{a_2}\frac{f_1}{f_2}, \end{aligned}$$

and

$$\begin{aligned} r_{i3}=4r_{f2}\frac{a_1}{a_2}\frac{f_1}{f_2}-2r_{i2}. \end{aligned}$$

A correction that allows a variable critical Richardson number and avoids negative TKE in stable condions uses

$$\begin{aligned} a_2=\frac{a'_2}{1+Ri_g}, \end{aligned}$$

following Canuto et al. (2008) and Kitamura (2010).

Appendix 4: The Mellor–Yamada–Nakanishi–Niino Level-2.5 model

In Eq. 37, \(e_2\), \(e_4\), \(e_5\), and \(D_{2.5}\) are given by

$$\begin{aligned} e_2= & {} q^2-9a_1a_2\left( 1-c_2\right) l_K^2\frac{g}{\varTheta } \frac{\partial {\overline{\theta }}_V}{\partial z},\\ e_4= & {} e_1-12a_1a_2\left( 1-c_2\right) l_K^2\frac{g}{\varTheta } \frac{\partial {\overline{\theta }}_V}{\partial z},\\ e_5= & {} 6a_1^2l_K^2\left[ \left( \frac{\partial {\overline{u}}}{\partial z}\right) ^2+\left( \frac{\partial {\overline{v}}}{\partial z}\right) ^2\right] , \end{aligned}$$

and

$$\begin{aligned} D_{2.5}=e_2e_4+e_3e_5, \end{aligned}$$

where the terms \(e_1\) and \(e_3\) are defined as

$$\begin{aligned} e_1= & {} q^2-3a_2b_2\left( 1-c_3\right) l_K^2\frac{g}{\varTheta } \frac{\partial {\overline{\theta }}_V}{\partial z},\\ e_3= & {} e_1+9a_2^2\left( 1-c_2\right) \left( 1-c_5\right) l_K^2\frac{g}{\varTheta } \frac{\partial {\overline{\theta }}_V}{\partial z}. \end{aligned}$$

The variance of temperature, the variance of total water content, and the covariance of \(\overline{\theta _l}\) and \({\overline{q}}_w\) are diagnostically estimated as

$$\begin{aligned} \overline{\theta '^2_{l}}_{2.5}= & {} \alpha _cb_2l_Kqs_{h2.5}\left( \frac{\partial \overline{\theta _l}}{\partial z}\right) ^2, \end{aligned}$$
(62)
$$\begin{aligned} \overline{q'^2_w}_{2.5}= & {} \alpha _cb_2l_Kqs_{h2.5}\left( \frac{\partial {\overline{q}}_w}{\partial z}\right) ^2, \end{aligned}$$
(63)
$$\begin{aligned} \overline{\theta '_lq'_w}_{2.5}= & {} \alpha _cb_2l_Kqs_{h2.5}\frac{\partial {\overline{q}}_w}{\partial z}\frac{\partial {\overline{\theta }}_l}{\partial z}. \end{aligned}$$
(64)

These quantities are not used in the level-2.5 parametrization, but they are necessary for calculating the contergradients and stability functions for the level-3 model. The parameter \(\alpha _c\) is defined by Nakanishi and Niino (2009) as

$$\begin{aligned} \alpha _c=\left\{ \begin{array}{ll} q/q_2, \ \ \ \mathrm {if} \ \ q<q_2\\ \ \ \ 1 , \ \ \ \ \mathrm {if} \ \ q \ge q_2 \\ \end{array} \right. . \end{aligned}$$
(65)

Appendix 5: The Mellor–Yamada–Nakanishi–Niino Level-3 model

In Eq. 40, \(D_3\) and \(e'_6\), are given by

$$\begin{aligned} D_{3}= & {} e'_2e'_4+e'_3e'_5, \\ e'_6= & {} 3a_2\left( 1-c_3\right) \frac{g}{\varTheta }, \end{aligned}$$

where \(e'_2\), \(e'_3\), \(e'_4\), \(e'_5\) and \(e'_7\) are defined as

$$\begin{aligned} e'_2= & {} q^2-9a_1a_2\left( 1-c_2\right) l_K^2\frac{g}{\varTheta } \frac{\partial {\overline{\theta }}_V}{\partial z}\alpha _c^2, \\ e'_3= & {} q^2 +9a_2^2\left( 1-c_2\right) \left( 1-c_5\right) l_K^2\frac{g}{\varTheta } \frac{\partial {\overline{\theta }}_V}{\partial z}\alpha _c^2, \\ e'_4= & {} q^2 -12a_1a_2\left( 1-c_2\right) l_K^2\frac{g}{\varTheta }\frac{\partial {\overline{\theta }}_V}{\partial z}\alpha _c^2, \\ e'_5= & {} 6a_1^2l_K^2\left[ \left( \frac{\partial {\overline{u}}}{\partial z}\right) ^2+\left( \frac{\partial {\overline{v}}}{\partial z}\right) ^2\right] \alpha _c^2, \end{aligned}$$

and

$$\begin{aligned} e'_7=e'_2+e'_5. \end{aligned}$$

The countergradient contributions in Eqs. 4244 are given by

$$\begin{aligned} \varGamma _{\theta }= & {} \frac{-e'_7\alpha _ce'_6\left( \overline{\theta _l'\theta _V'} -\overline{\theta _l'\theta '_V}_{2.5}\right) }{D_3}, \end{aligned}$$
(66)
$$\begin{aligned} \varGamma _V= & {} \frac{e'_7\alpha _ce'_6\frac{g}{\varTheta }\left( \overline{\theta '^2_V} -\overline{\theta '^2_V}_{2.5}\right) }{D_3}, \end{aligned}$$
(67)
$$\begin{aligned} \varGamma _q= & {} \frac{-e'_7\alpha _ce'_6\left( \overline{q_w'\theta _V'} -\overline{q_w'\theta _V'}_{2.5}\right) }{D_3}, \end{aligned}$$
(68)

where the terms \( \overline{ \theta '_l\theta '_V}\), \(\overline{q'_w\theta '_V}\), \(\overline{\theta '^2_V}\) are defined as

$$\begin{aligned} \overline{ \theta '_l\theta '_V}=\beta _{\theta }\overline{\theta '^{2}_{l}} +\beta _q\overline{\theta '_lq'_w}, \ \ \overline{q'_w\theta '_V}=\beta _{\theta }\overline{\theta '_lq_w} +\beta _q\overline{q'^2_w} \ \ \mathrm {and} \ \ \overline{\theta '^2_V}=\beta _{\theta }\overline{\theta '_l\theta '_V} +\beta _q\overline{q'_w\theta '_V}. \end{aligned}$$

In the expressions above, \(\beta _{\theta }\) and \(\beta _q\) are functions related to the condensation process (Nakanishi and Niino 2009). The above equations are also valid for the terms with sub-index 2.5 (present in Eqs. 6668). Such a sub-index means that these terms are evaluated by the level-2.5 MYNN parametrization. Therefore, the determination of \( \overline{ \theta '_l\theta '_V}\), \(\overline{q'_w\theta '_V}\), and \(\overline{\theta '^2_V}\) demands knowledge of the terms \(\overline{\theta '^2_{l}}_{2.5}\), \( \overline{q'^2_w}_{2.5}\), and \( \overline{\theta '_lq'_w}_{2.5}\), which are presented in Appendix 3.

The other prognostic equations solved in the level-3 model, for \(\overline{\theta '^2_l}\), \( \overline{q'^2_w} \) and \(\overline{\theta '_l q'_w}\) are

$$\begin{aligned} \frac{\partial \overline{\theta '^2_l}}{\partial t}= & {} 2l_Kq\left[ s_{h2.5}\left( \frac{\partial \overline{\theta _l}}{\partial z}\right) +\varGamma _{\theta }\right] \left( \frac{\partial \overline{\theta _l}}{\partial z}\right) +\frac{\partial }{\partial z}\left[ l_Kqs_{m}\frac{\partial \overline{\theta '^2_l}}{\partial z}\right] -\frac{2q\overline{\theta '^2_l}}{b_2l_K}, \end{aligned}$$
(69)
$$\begin{aligned} \frac{\partial \overline{q'^2_w}}{\partial t}= & {} 2l_Kq\left[ s_{h2.5}\left( \frac{\partial \overline{q_w}}{\partial z}\right) +\varGamma _{q}\right] \left( \frac{\partial \overline{q_w}}{\partial z}\right) +\frac{\partial }{\partial z}\left[ l_Kqs_{m}\frac{\partial \overline{q'^2_w}}{\partial z}\right] -\frac{2q \overline{q'^2_w}}{b_2l_K}, \end{aligned}$$
(70)
$$\begin{aligned} \frac{\partial \overline{\theta '_l q'_w}}{\partial t}= & {} l_Kq\left\{ \left[ s_{h2.5}\left( \frac{\partial \overline{\theta _l}}{\partial z}\right) +\varGamma _{\theta }\right] \left( \frac{\partial {\overline{q}}_w}{\partial z}\right) + \left[ s_{h2.5}\left( \frac{\partial \overline{q_w}}{\partial z}\right) +\varGamma _{q}\right] \right. \nonumber \\&\left. \left( \frac{\partial \overline{\theta _l}}{\partial z}\right) \right\} + \frac{\partial }{\partial z}\left[ l_Kqs_{m}\frac{\partial \overline{\theta '_lq'_w}}{\partial z}\right] -\frac{2q \overline{\theta '_lq'_w}}{b_2l_K}. \end{aligned}$$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroneze, R., Acevedo, O.C., Costa, F.D. et al. How is the Two-Regime Stable Boundary Layer Reproduced by the Different Turbulence Parametrizations in the Weather Research and Forecasting Model?. Boundary-Layer Meteorol 178, 383–413 (2021). https://doi.org/10.1007/s10546-020-00581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00581-2

Keywords

Navigation