Biologia Plantarum

, Volume 61, Issue 4, pp 693–701 | Cite as

Overexpression of ERF96, a small ethylene response factor gene, enhances salt tolerance in Arabidopsis

  • X. Wang
  • C. Hou
  • K. Zheng
  • Q. Li
  • S. Chen
  • S. WangEmail author
Original paper


Salt stress is one of the abiotic stresses limiting the yield of crops worldwide. However, the molecular mechanisms underlying the regulation of plant response to salt stress are not completely elucidated. Ethylene response factors (ERFs) are a subfamily of the AP2 (APETALA2)/ERF transcription factor family that regulates multiple aspects of plant growth and development, and plant responses to biotic and abiotic stresses. ERF96 is one of the small ERFs that is involved in plant defense response and abscisic acid signaling in Arabidopsis. By using real time quantitative PCR, we found that the expression of ERF96 in the wild type Arabidopsis thaliana (cv. Col-0) seedlings was induced by NaCl treatment. The transgenic plants overexpressing ERF96 were more tolerant to salt stress in terms of NaCl inhibited seed germination, early seedling development, and fresh mass. Consistent with these observations, elevated expressions of some NaCl-responsive genes including responsive drought 29 (RD29A), Δ1-pyrroline-5-carboxylate synthetase (P5CS), cold responsive 15A (COR15A), and kinase 1 (KIN1) were observed in the transgenic plants in the presence of NaCl. We also found that the Na+ and K+ content and expressions of genes related to Na+/K+ homeostasis including stelar K+ outward rectifier (SKOR) and potassium transport 2/3 (AKT2/3) were altered in the ERF96 transgenic plants in response to NaCl treatment. Taken together, these results showed that overexpression of ERF96 enhanced plant tolerance to salt stress, indicating that ERF96 is a positive regulator of salt tolerance in Arabidopsis.

Additional key words

NaCl potassium sodium transcription factor transgenic plants 



avscisic acid


potassium transporter 2/3




ascorbic acid


coldresponsive 15A


ethylene response factor


kinase 1


Murashige and Skoog


Δ1-pyrroline-5-carboxylate synthetase


related to ABI3/VP1


responsive drought 29A


stelar K+ outward rectifier


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_734_MOESM1_ESM.pdf (116 kb)
Supplementary material, approximately 116 KB.


  1. Agarwal, P., Agarwal, P.K., Joshi, A.J., Sopory, S.K., Reddy, M.K.: Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. — Mol. Biol. Rep. 37: 1125–1135, 2010.CrossRefPubMedGoogle Scholar
  2. Agarwal, P.K., Agarwal, P., Reddy, M.K., Sopory, S.K.: Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. — Plant Cell Rep. 25: 1263–1274, 2006.CrossRefPubMedGoogle Scholar
  3. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., Pereira, A.: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. — Plant Cell 16: 2463–2480, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., Ecker, J.R.: Genome-wide insertional mutagenesis of Arabidopsis thaliana. — Science 301: 653–657, 2003.CrossRefPubMedGoogle Scholar
  5. Aukerman, M.J., Sakai, H.: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2- like target genes. — Plant Cell 15: 2730–2741, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Broun, P., Poindexter, P., Osborne, E., Jiang, C.Z., Riechmann, J.L.: WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. — Proc. nat. Acad. Sci. USA 101: 4706–4711, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Catinot, J., Huang, J.B., Huang, P.Y., Tseng, M.Y., Chen, Y.L., Gu, S.Y., Lo, W.S., Wang, L.C., Chen, Y.R., Zimmerli, L.: ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate- and ethyleneresponsive defence genes. — Plant Cell Environ. 38: 2721–2734, 2015.CrossRefPubMedGoogle Scholar
  8. Century, K., Reuber, T.L., Ratcliffe, O.J.: Regulating the regulators: the future prospects for transcription-factorbased agricultural biotechnology products. — Plant Physiol. 147: 20–29, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chakravarthy, S., Tuori, R.P., D’Ascenzo, M.D., Fobert, P.R., Despres, C., Martin, G.B.: The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. — Plant Cell 15: 3033–3050, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.CrossRefPubMedGoogle Scholar
  11. Colmer, T.D., Flowers, T.J., Munns, R.: Use of wild relatives to improve salt tolerance in wheat. — J. exp. Bot. 57: 1059–1078, 2006.CrossRefPubMedGoogle Scholar
  12. El Ouakfaoui, S., Schnell, J., Abdeen, A., Colville, A., Labbé, H., Han, S., Baum, B., Laberge, S., Miki, B.: Control of somatic embryogenesis and embryo development by AP2 transcription factors. — Plant mol. Biol. Rep. 74: 313–26, 2010.CrossRefGoogle Scholar
  13. Eulgem, T., Somssich, I.E.: Networks of WRKY transcription factors in defense signaling. — Curr. Opin. Plant Biol. 10: 366–371, 2007.CrossRefPubMedGoogle Scholar
  14. Gao, S., Zhang, H., Tian, Y., Li, F., Zhang, Z., Lu, X., Chen, X., Huang, R.: Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. — Plant Cell Rep. 27: 1787–1795, 2008.CrossRefPubMedGoogle Scholar
  15. Giri, M.K., Swain, S., Gautam, J.K., Singh, S., Bhattacharjee, L., Nandi, A.K.: The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. — J. Plant Physiol. 171: 860–967, 2014.CrossRefPubMedGoogle Scholar
  16. Guo, H., Zhang, W., Tian, H., Zheng, K., Dai, X., Liu, S., Hu, Q., Wang, X., Liu, B., Wang, S.: An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis. — Front. Plant Sci. 6: 295, 2015.PubMedPubMedCentralGoogle Scholar
  17. Hajdukiewicz, P., Svab, Z., Maliga, P.: The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. — Plant mol. Biol. 25: 989–994, 1994.CrossRefPubMedGoogle Scholar
  18. Hu, Y.X., Wang, Y.H., Li, X.F., Li, J.Y.: Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. — Cell Res. 14: 8–15, 2004.CrossRefPubMedGoogle Scholar
  19. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. — Plant Cell Physiol. 47: 141–153, 2006.CrossRefPubMedGoogle Scholar
  20. Jin, T., Chang, Q., Li, W., Yin, D., Li, Z., Wang, D., Liu, B., Liu, L.X.: Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. — Plant Cell Tissue Organ Cult. 100: 219–227, 2010.CrossRefGoogle Scholar
  21. Jofuku, K.D., Den Boer, B.G., Van Montagu, M., Okamuro, J.K.: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. — Plant Cell 6: 1211–1225, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jung, J., Won, S.Y., Suh, S.C., Kim, H., Wing, R., Jeong, Y., Hwang, I., Kim, M.: The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. — Planta 225: 575–588, 2007.CrossRefPubMedGoogle Scholar
  23. Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R., Marsch-Martinez, N., Krishnan, A., Nataraja, K.N., Udayakumar, M., Pereira, A.: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. — Proc. nat Acad. Sci. USA 104: 15270–15275, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kang, J.Y., Choi, H.I., Im, M.Y., Kim, S.Y.: Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. — Plant Cell 14: 343–357, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kirch, T., Simon, R., Grünewald, M., Werr, W.: The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. — Plant Cell 15: 694–705, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H., Inukai, Y.: The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS 5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. — Plant J. 67: 472–484, 2011.CrossRefPubMedGoogle Scholar
  27. Leigh, R.A.: Solute composition of vacuoles. — Adv. Bot. Res. 25: 171–194, 1997.CrossRefGoogle Scholar
  28. Liu, D., Li, W., Cheng, J., Hou, L.: Expression analysis and functional characterization of a cold-responsive gene COR15A from Arabidopsis thaliana. — Acta Physiol. Plant. 36: 2421–2432, 2014.CrossRefGoogle Scholar
  29. Maathuis, F.J.: The role of monovalent cation transporters in plant responses to salinity. — J. exp. Bot. 57: 1137–1147, 2006.CrossRefPubMedGoogle Scholar
  30. Marschner, H.: The Mineral Nutrition of Higher Plants. 2nd Ed. — Academic Press, London 1995.Google Scholar
  31. Marten, I., Hoth, S., Deeken, R., Ache, P., Ketchum, K.A., Hoshi, T., Hedrich, R.: AKT3, a phloem-localized K+ channel, is blocked by protons. — Proc. nat. Acad. Sci. USA 96: 7581–7586, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miller, G.A.D., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R.O.N.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010.CrossRefPubMedGoogle Scholar
  33. Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  34. Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H.: Genomewide analysis of the ERF gene family in Arabidopsis and rice. — Plant Physiol. 140: 411–432, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nakashima, K., Shinwari, Z., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and highsalinity- responsive gene expression. — Plant mol. Biol. 42: 657–665, 2000.CrossRefPubMedGoogle Scholar
  36. Nakashima, K., Fujita, Y., Katsura, K., Maruyama, K., Narusaka, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. — Plant mol. Biol. 60: 51–68, 2006.CrossRefPubMedGoogle Scholar
  37. Oh, S., Kwon, C., Choi, D., Song, S., Kim, J.: Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. — Plant Biotechnol. J. 5: 646–656, 2007.CrossRefPubMedGoogle Scholar
  38. Oh, S.J., Kim, Y.S., Kwon, C.W., Park, H.K., Jeong, J.S., Kim, J.K.: Overexpression of the transcription factor AP37 in rice improves grain yield under drought condition. — Plant Physiol. 150: 1368–1379, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ohme-Takagi, M., Shinshi, H.: Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. — Plant Cell 7: 173–182, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oñate-Sánchez, L., Anderson, J.P., Young, J., Singh, K.B.: AtERF14, a member of the ERF family of transcription factors, plays a non-redundant role in plant defense. — Plant Physiol. 43: 400–409, 2007.Google Scholar
  41. Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z., Zhang, Z.: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. — Plant Biotechnol. J. 12: 468–479, 2014.CrossRefPubMedGoogle Scholar
  42. Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K.A., Meeley, R., Ananiev, E.V., Svitashev, S., Bruggemann, E., Li, B., Hainey, C.F., Radovic, S., Zaina, G., Rafalski, J.A., Tingey, S.V., Miao, G.H., Phillips, R.L., Tuberosa, R.: Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. — Proc. nat. Acad. Sci. USA 104: 11376–11381, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Singh, K., Foley, R.C., Oñate-Sánchez, L.: Transcription factors in plant defense and stress responses. — Curr. Opin. Plant Biol. 5: 430–436, 2002.CrossRefPubMedGoogle Scholar
  44. Seo, Y., Park, J.B., Cho, Y.J., Jung, C., Seo, H., Park, S.K., Nahm, B.H., Song, J.T.: Overexpression of the ethyleneresponsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. — Mol. Cells 30: 271–277, 2010.CrossRefPubMedGoogle Scholar
  45. Strizhov, N., Abrahám, E., Okrész, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C., Szabados, L.: Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. — Plant J. 12: 557–569, 1997.CrossRefPubMedGoogle Scholar
  46. Tian, H., Guo, H., Dai, X., Cheng, Y., Zheng, K., Wang, X., Wang, S.: An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. —Sci. Rep. 5: 17587, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tähtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S., Borg, M.: The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. — Planta 203: 442–447, 1997.CrossRefPubMedGoogle Scholar
  48. Trujillo, L.E., Sotolongo, M., Menendez, C., Ochogavia, M.E., Coll, Y., Hernandez, I., Borrás-Hidalgo, O., Thomma, B.P., Vera, P., Hernández, L.: SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. — Plant Cell Physiol. 49: 512–525, 2008.CrossRefPubMedGoogle Scholar
  49. Wang, S., Li, E., Porth, I., Chen, J.G., Mansfield, S.D., Douglas, C.J.: Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. — Sci. Rep. 4: 5054, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang, S., Tiwari, S.B., Hagen, G., Guilfoyle, T.J.: AUXIN RESPONSE FACTOR7 restores the expression of auxinresponsive genes in mutant Arabidopsis leaf mesophyll protoplasts. — Plant Cell 17: 1979–1993, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang, X., Liu, S., Tian, H., Wang, S., Chen, J.G.: The small Ethylene Response Factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis. — Front. Plant Sci. 6:1064, 2015a.PubMedPubMedCentralGoogle Scholar
  52. Wang, X., Wang, X., Hu, Q., Dai, X., Tian, H., Zheng, K., Wang, X., Mao, T., Chen, J.G., Wang, S.: Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. — Plant J. 83: 300–311, 2015b.CrossRefPubMedGoogle Scholar
  53. Wu, L., Chen, X., Ren, H., Zhang, Z., Zhang, H., Wang, J,. Wang, X.C., Huang, R.: ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. — Planta 226: 815–825, 2007.CrossRefPubMedGoogle Scholar
  54. Wu, L., Zhang, Z., Zhang, H., Wang, X., Huang, R.: Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. — Plant Physiol. 148: 1953–1963, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought, and salt stress. — Plant Cell 14 (Suppl): S165–S183, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. — Annu. Rev. Plant Biol. 57: 781–803, 2006.CrossRefPubMedGoogle Scholar
  57. Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., Wu, K.: Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. — Plant mol. Biol. 58: 585–596, 2005.CrossRefPubMedGoogle Scholar
  58. Yin, X., Allan, A.C., Chen, K., Ferguson, I.B.: Kiwifruit EIL and ERF genes involved in regulating fruit ripening. — Plant Physiol. 153: 1280–1292, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhai, Y., Wang, Y., Li, Y., Lei, T., Yan, F., Su, L., Li, X., Zhao, Y., Sun, X., Li, J., Wang, Q.: Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. — Gene 513: 174–183, 2013.CrossRefPubMedGoogle Scholar
  60. Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J., Ma, Y.: Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. — J. exp. Bot. 60: 3781–3796, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang, H., Li, W., Chen, J., Yang, Y., Zhang, Z., Zhang, H., Wang, X.C., Huang, R.: Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. —Plant Mol. Biol. 63: 63–71, 2007.CrossRefPubMedGoogle Scholar
  62. Zhang, H., Liu, W., Wan, L., Li, F., Dai, L., Li, D., Zhang, Z., Huang, R.: Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. — Transgenic Res. 19: 809–818, 2010b.CrossRefPubMedGoogle Scholar
  63. Zhang, L., Li, Z., Quan, R., Li, G., Wang, R., Huang, R.: An AP2 domain-containing gene, ESE 1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. — Plant Physiol. 157: 854–865, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang, Z., Li, F., Li, D., Zhang, H., Huang, R.: Expression of ethylene response factor JERF1 in rice improves tolerance to drought. — Planta 232: 765–774, 2010a.CrossRefPubMedGoogle Scholar
  65. Zhang, Z., Wang, J., Zhang, R., Huang, R.: The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. — Plant J. 71: 273–287, 2012.CrossRefPubMedGoogle Scholar
  66. Zhu, G.L., Deng, X.W., Zuo, W.N.: Determination of free proline in plants. — Plant Physiol. 1: 35–37, 1983.Google Scholar
  67. Zhu, Q., Zhang, J., Gao, X., Tong, J., Xiao, L., Li, W., Zhang, H.: The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. — Gene 457: 1–12, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • X. Wang
    • 1
  • C. Hou
    • 1
  • K. Zheng
    • 1
  • Q. Li
    • 1
  • S. Chen
    • 1
  • S. Wang
    • 1
    Email author
  1. 1.Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & CytologyNortheast Normal UniversityChangchunP.R. China

Personalised recommendations