Skip to main content
Log in

Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress

  • Original papers
  • Published:
Biologia Plantarum

Abstract

Nitric oxide (NO) and 5-aminolevulinic acid (5ALA) play fundamental roles in plant responses to environmental stresses, but their cross-talk in antioxidant defense in cold-stressed Elymus nutans Griseb. have not been investigated. We herein report that 5ALA and NO donor, sodium nitroprusside (SNP), alleviated cold stress-induced plant growth inhibition and lipid peroxidation in roots of two E. nutans ecotypes (Damxung, DX and Zhengdao, ZD). However, application of an NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (PTIO) differentially blocked these protective effects indicating that an inhibition of NO accumulation reduced 5ALA-enhanced cold resistance. Application of exogenous 5ALA or NO markedly up-regulated activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, enhanced reduced glutathione accumulation and reduced glutathione to oxidized glutathione ratio, activated plasma membrane (PM) H+-ATPase, and reduced Na+/K+ ratio in roots of the two E. nutans ecotypes. Moreover, in the presence of 5ALA, nitric oxide synthase (NOS) activity and NO release in cold-resistant DX were higher than those in cold-sensitive ZD. Conversely, both NO treatment and inhibition of endogenous NO accumulation by PTIO or NOS inhibitor Nω-nitro-L-arginine did not induce 5ALA production. These results suggest that NO might be acting as a downstream signal to mediate 5ALA-induced cold resistance by activating antioxidant defense and PM H+-ATPase and maintaining Na+ and K+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5ALA:

5-aminolevulinic acid

APX:

ascorbate peroxidase

AsA:

reduced ascorbate

CAT:

catalase

CK:

control

DHA:

dehydroascorbate

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

H2O2 :

hydrogen peroxide

L-NNA:

Nω-nitro-L-arginine

MDA:

malondialdehyde

MDHAR:

monodehydroascorbate reductase

NADPH:

nicotinamide adenine dinucleotide phosphate

NO:

nitric oxide

NR:

nitrate reductase

NOS:

nitric oxide synthase

PGR:

plant growth regulator

PM:

plasma membrane

PTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

SNP:

sodium nitroprusside

SOD:

superoxide dismutase

TCA:

trichloroacetic acid

Tu:

tungstate

References

  • Ahn, S.J., Im, Y.J., Chung, G.C., Cho, B.H.: Inducible expression of plasma membrane H+-ATPase in the roots of fig leaf gourd plants under chilling root temperature. — Physiol. Plant. 106: 35–40, 1999.

    Article  CAS  Google Scholar 

  • Akram, N.A., Ashraf, M.: Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. — J. Plant Growth Regul. 32: 663–679, 2013.

    Article  CAS  Google Scholar 

  • Ali, B., Tao, Q.J., Zhou, Y.F., Gill, R.A., Ali, S., Rafiq, M.T., Xu, L., Zhou, W.J.: 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. - Ecotox. environ. Safe. 92: 271–280, 2013.

    Article  CAS  Google Scholar 

  • Ali, B., Xu, X., Gill, R.A., Yang, S., Ali, S., Tahir, M., Zhou, W.J.: Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. — Ind. Crop. Prod. 52: 617–626, 2014.

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek, M., Floryszak-Wieczore, K.J., Kubis, J.: Involvement of nitric oxide in water stress-induced responses of cucumber roots. — Plant Sci. 177: 682–690, 2009.

    Article  CAS  Google Scholar 

  • Aroca, R., Irigoyen, J.J., Sánchez-Dı́az, M.: Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity. — Plant Sci. 161: 719–726, 2001.

    Article  CAS  Google Scholar 

  • Bai, X.G., Chen, J.H., Kong, X.X., Todd, C.D., Yang, Y.P., Hu, X.Y., Li, D.Z.: Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. — Free Radical Biol. Med. 53: 710–720, 2012.

    Article  CAS  Google Scholar 

  • Balestrasse, K.B., Tomaro, M.L., Batlle, A., Noriega, G.O.: The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. — Phytochemistry 71: 2038–2045, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I., Marschner, H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. — Plant Physiol. 98: 1222–1227, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas, F.J., Chaki, M., Fernández-Ocaña, A., Valderrama, R., Palma, J.M., Carreras, A., Begara-Morales, J.C., Airaki, M., Del Barroso, L.A., Barroso, J.B.: Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. — Plant Cell Physiol. 49: 1711–1722, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, N.M.: Mechanisms for nitric oxide synthesis in plants. — J. exp. Bot. 57: 471–478, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa, R.S., Plumb-dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Erdal, S., Dumlupinar, R.: Exogenously treated mammalian sex hormones affects in organic constituents of plants. — Biol. Trace Element Res. 143: 500–506, 2011.

    Article  CAS  Google Scholar 

  • Fu, J.J., Sun, Y.F., Chu, X.T., Xu, Y.F., Hu, T.M.: Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress. — PLoS ONE 9: e107152, 2014.

    Article  Google Scholar 

  • Gill, S.S., Hasanuzzaman, M., Nahar, K., Macovei, A., Tuteja, N.: Importance of nitric oxide in cadmium stress tolerance in crop plants. — Plant Physiol. Biochem. 63: 254–261, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Harel, E., Klein, S.: Light dependent formation of 5-aminolevulinic acid in etiolated leaves of higher plants. — Biochem. biophys. Res. Commun. 49: 364–370, 1972.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Tang, R.H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F.: Nitric oxide represses the Arabidopsis floral transition. — Science 305: 1671–1968, 2004.

    Article  Google Scholar 

  • Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., Konnai, M.: Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. — J. Pest Sci. 23: 29–33, 1998.

    Article  CAS  Google Scholar 

  • Kampfenkel, K., Van Montagu, M., Inzé, D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. — Anal. Biochem. 225: 165–167, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H.M., Saltveit, M.E.: Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. — Physiol. Plant. 115: 571–576, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M.: Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. — Nitric Oxide 27: 210–218, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Kong, W.W., Huang, C.Y., Chen, Q., Zou, Y.J., Zhang, J.X.: Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. — Fungal. Genet. Biol. 49: 15–20, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz, A., Korkmaz, Y., Demirkıran, A.R.: Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. — Environ. exp. Bot. 67: 495–501, 2010.

    Article  CAS  Google Scholar 

  • Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic-acid in spinach (Spinacia oleracea) chloroplasts — the effect of hydrogen-peroxide and of paraquat. — Biochem. J. 210: 899–903, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., Hao, F.: NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. — J. exp. Bot. 63: 305–317, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, P.K., Bisht, S.C., Ruwari, P., Selvakumar, G., Joshi, G.K., Bisht, J.K., Bhatt, J.C., Gupta, H.S.: Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant pseudomonads from NW Himalayas. — Arch. Microbiol. 193: 497–513, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M.E., Noack E.: Nitric oxide assay using hemoglobin method. — Methods Enzymol. 233: 240–250, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Naeem, M.S., Jin, Z.L., Wan, G.L., Liu, D., Liu, H.B., Yoneyama, K., Zhou, W.J.: 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). - Plant Soil 332: 405–415, 2010.

    Article  CAS  Google Scholar 

  • Naeem, M.S., Rasheed, M., Liu, D., Jin, Z.L., Ming, D.F., Yoneyama, K., Takeuchi, Y., Zhou, W.J.: 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. - Acta Physiol. Plant. 33: 517–528, 2011.

    Article  CAS  Google Scholar 

  • Naeem, M.S., Warusawitharana, H., Liu, H.B., Liu, D., Ahmad, R., Waraich, E.A., Xu, L., Zhou, W.J.: 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. - Plant Physiol. Biochem. 57: 84–92, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Palmgren, M.G., Askerlund, P., Fredrikson, K., Widell, S., Sommarin, M., Larsson, C.: Sealed inside-out and right-side-out plasma membrane vesicles: optimal conditions for formation and separation. — Plant Physiol. 92: 871–880, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryter, S.W., Otterbein, L.E., Morse, D., Choi, A.M.K.: Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. — Mol. Cell Biochem. 234: 249–263, 2002.

    Article  PubMed  Google Scholar 

  • Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., Yannarelli, G.G.: Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. — Phytochemistry 71: 1700–1707, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Shaedle, M., Bassham, J.A.: Chloroplast glutathione reductase. — Plant Physiol. 59: 1011–1012, 1977.

    Article  Google Scholar 

  • Shi, H., Li, R., Cai, W. Liu, W., Wang, C., Lu, Y.: Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. — Plant Cell Physiol. 53: 344–357, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y., Chan, Z.: Manipulation of arginase expression modulate abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. — J. exp. Bot. 64: 1367–1379, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, L., Ding, W., Zhao, M., Sun, B., Zhang, L.: Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. — Plant Sci. 171: 449–458, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Song, L.L., Ding, W., Shen, J., Zhang, Z.G., Bi, Y.R., Zhang, L.X.: Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. — Plant Sci. 175: 826–832, 2008.

    Article  CAS  Google Scholar 

  • Sun, Y.P., Zhang, Z.P., Wang, L.J.: Promotion of 5-amino-levulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. — Photosynthetica 47: 347–354, 2009.

    Article  CAS  Google Scholar 

  • Tartoura, K.A.H., Youssef, S.A.: Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions. — Sci. Hort. 130: 862–868, 2011.

    Article  CAS  Google Scholar 

  • Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., Rodriguez, J.: Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. — Environ. exp. Bot. 62: 60–68, 2008.

    Article  CAS  Google Scholar 

  • Wang, J.J., Jiang, W.B., Huang, B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. — Physiol. Plant. 121: 258–264, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wendehenne, D., Pugin, A., Klessig, D.F., Durner, J.: Nitric oxide: comparative synthesis and signaling in animal and plant cells. — Trends Plant Sci. 6: 177–183, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M.J., Dong, J.F., Zhang, M., Xu, X.B., Sun, L.N.: Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. — Postharvest Biol. Technol. 65: 5–12, 2012.

    Article  CAS  Google Scholar 

  • Xu, Y.F., Chu, X.T., Fu, J.J., Yang, L.Y., Hu, T.M.: Crosstalk of nitric oxide with calcium induced tolerance of tall fescue leaves to high irradiance. — Biol. Plant. 60: 376–384, 2016.

    Article  Google Scholar 

  • Xu, Y.F., Sun, X.L., Jin, J.W., Zhou, H.: Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. — J. Plant Physiol. 167: 512–518, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Yu, C.W., Murphy, T.M., Lin, C.H.: Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. — Funct. Plant Biol. 30: 955–963, 2003.

    Article  CAS  Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., Jiang, M.: Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. — Plant Cell Physiol. 52: 181–192, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A.Y., Jiang, M.Y., Zhang, J.H, Ding, H.D., Xu, S.C., Hu, X.L., Tan, M.P.: Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. — New Phytol. 175: 36–50, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Li, D.M., Gao, Y., Yu, B., Xia, C.X., Bai, J.G.: Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. — Biol. Plant. 56: 780–784, 2012.

    Article  CAS  Google Scholar 

  • Zhang, L.G., Zhou, S., Xuan, Y., Sun, M., Zhao, L.Q.: Protective effect of nitric oxide against oxidative damage in Arabidopsis leaves under ultraviolet-B irradiation. — J. Plant Biol. 52: 135–140, 2009a.

    Article  Google Scholar 

  • Zhang, W.F., Zhang, F., Raziuddin, R., Gong, H.J., Yang, Z.M., Lu, L., Ye, Q.F., Zhou, W.J.: Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. — J. Plant Growth Regul. 27: 159–169, 2008.

    Article  Google Scholar 

  • Zhang, Y.K., Han, X.J., Chen, X.L., Jin, H., Cui, X.M.: Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress. — Sci. Hort. 123: 217–223, 2009b.

    Article  CAS  Google Scholar 

  • Zhang, Y.Y., Wang, L.L., Liu, Y.L., Zhang, Q., Wei, Q.P., Zhang, W.H.: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. — Planta 224: 545–555, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., He, J.X., Wang, X.M., Zhang, L.X.: Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. — J. Plant Physiol. 165: 182–191, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. F. Xu or T. M. Hu.

Additional information

Acknowledgement

This work was supported by the Natural Science Foundation Research Project of Shaanxi Province of China (No. 2016JM3025), the National Natural Science Foundation of China (No. 31402129), the Northwest A&F University Fundamental Research Special Fund (No. QN2011100) and the Key Projects in the National Science & Technology Pillar Program in the Twelfth Five-Year Plan Period (No. 2011BAD17B05).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J.J., Chu, X.T., Sun, Y.F. et al. Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress. Biol Plant 60, 585–594 (2016). https://doi.org/10.1007/s10535-016-0635-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0635-1

Additional key words

Navigation