Skip to main content
Log in

Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition

  • Original Papers
  • Published:
Photosynthetica

Abstract

Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg−1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

5-aminolevulinic acid

APX:

ascorbate peroxidase

C i :

intercellular CO2 concentration

Chl:

chlorophyll

DDC:

diethyldithiocarbamate

E :

transpiration rate

ETR:

electron transport rate

Fm :

maximum fluorescence

Fm′:

maximum fluorescence of the light-adapted leave

Fo :

initial fluorescence

Fv :

variable fluorescence

Fv/Fm :

maximal photochemical effciency of PSII

FM:

fresh mass

Mo :

approximate initial slope of the fluorescence transient

g s :

stomata conductance

JIP test:

formulate a group of fluorescence parameters, which quantify the stepwise flow of energy through PSII

O2 ·− :

superoxide anion radical

OEC:

oxygen evolving complex

OJIP:

chlorophyll a fluorescence transients

P N :

net photosynthetic rate

PIABS :

performance index on a basis of absorption

POD:

peroxidase

PS:

photosystem

QA :

reduced QA, one electron acceptor bound in PQ

QA 2− :

completely reduced QA

qP :

photochemical quenching

SOD:

superoxide dismutase

Vj :

relative variable fluorescence intensity at the J-step

Wk :

amplitude of the K step

φEo :

quantum yield of electron transport

Ψo :

possibility of a trapped exciton moves an electron into the electron transport chain beyond QA

ΦPSII :

actual photosynthetic efficiency

References

  • Appenroth, K.J., Stöckel, J., Srivastava, A., Strasser, R.J.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115:49–64, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp, C.O., Fridovich, I.: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Bindu, R.C., Vivekanandan, M.: Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. — Plant Growth Regul. 26: 15–18, 1998.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III., Baker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plant. 98: 253–264, 1996.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III., Logan, B.A., Verhoeven, A.S.: Xanthophyll cycle-dependent energy dissipation and flexible Photosystem-II efficiency in plants acclimated to light stress.— Aust. J. Plant Physiol. 22: 249–260, 1995.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III.: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species.— Planta 198: 460–470, 1996.

    Article  CAS  Google Scholar 

  • He, H.J., Dai, Z.S., Xiao, A.J., Zhen, S.J.: [Research on photosynthesis of watermelon. — Chinese watermelon and muskmelon.] 1: 18–20, 1994.[In Chin.]

    Google Scholar 

  • Hotta, Y., Tanaka, H., Takaoka, H., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on the yield of several crops. — Plant Growth Regul. 22: 109–114, 1997a.

    Article  CAS  Google Scholar 

  • Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., Konnai, M.: Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. — J. Pest. Sci. 23: 29–33, 1998.

    CAS  Google Scholar 

  • Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M.: New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. — Biosci. Biotech. Biochem. 61: 2025–2028, 1997b.

    Article  CAS  Google Scholar 

  • Jones, D.K., Dalton, D.A., Rosell, F.I., Raven, E.L.: Class I heme peroxidases: Characterization of soybean ascorbate peroxidase. — Arch. Biochem. Biophys. 360: 73–178, 1998.

    Article  Google Scholar 

  • Kang, L., Cheng, Y., Wang, L.J.: [Effects of 5-aminolevulinic acid (ALA) on the photosynthesis and anti-oxidative enzymes activities of the leaves of greenhouse watermelon in summer and winter.] — Acta Bot. Boreal. Occident. Sin. 26:2297–2301, 2006. [In Chin.]

    CAS  Google Scholar 

  • Krüger, G.H.J., Tsimilli-Michael, M., Strasser, R.J.: Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. — Physiol. Plant. 101: 265–277, 1997.

    Article  Google Scholar 

  • Kumar, M.A., Chaturvedi, S., Söll, D.: Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. — Phytochem. 51: 847–851, 1999.

    Article  CAS  Google Scholar 

  • Liu, H., Kang, L., Wang, L.J. [Promotion of 5-aminolevunlinic acid on seed germination of watermelon (Citrullus lanatus) under salt stress.] — J. Fruit Sci. 23: 854–859, 2006a. [In Chin.]

    CAS  Google Scholar 

  • Liu, W.Q., Kang, L., Wang, L.J.: [Effect of 5-aminolevulinic acid (ALA) on photosynthesis and its relationship with antioxidant enzymes of strawberry leaves.] — Acta. Bot. Boreal. Occident. Sin. 26: 57–62, 2006b. [In Chin.]

    CAS  Google Scholar 

  • Lukšienė, Ž., Danilčenko, H., Tarasevičienė, Ž., Anusevičius, Ž., Marozienė, A., Nivinskas, H.: New approach to the fungal decontamination of wheat used for wheat sprouts: Effects of aminolevulinic acid. — Int. J. Food Microbiol. 116: 153–158, 2007.

    Article  PubMed  Google Scholar 

  • Mehler, A.H.: Studies on reactions of illuminated chloroplasts. 1. Mechanism of the reduction of oxygen and other Hill reagents. — Arch. Biochem. Biophys. 33: 65–77, 1951.

    Article  CAS  Google Scholar 

  • Memon, S. A., Hou, X.L, Wang, L.J., Li, Y.: Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). — Acta Physiol. Plant. 31: 51–57, 2009.

    Article  CAS  Google Scholar 

  • Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., Tanaka, K.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — J. Plant Physiol. 160: 1085–1091, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz, C.A., Montazer-Zouhoor, A., Hopen, H., and Wu, S.M.: Photodynamic herbicides. I. Concept and phenomenology. — Enzyme Microb. Technol. 6: 390–396, 1984.

    Google Scholar 

  • Srivastava, A., Govindjee, Strasser, R.J.: Greening of peas: parallel measurements on 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. — Photosynthetica 37: 365–392, 1999.

    Article  CAS  Google Scholar 

  • Srivastava, A., Guisse, B., Greppin, H., Strasser, R.J.: Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. — Biochim. Biophys. Acta 1320: 95–106, 1997.

    Article  CAS  Google Scholar 

  • Srivastava, A., Juttner, F., Strasser, R.J.: Action of the allelochemical, fischerellin A, on photosystem II. — Biochim. Biophys. Acta 1364: 326–336, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.

    Article  CAS  Google Scholar 

  • Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor & Francis Press, London — New York 2000.

    Google Scholar 

  • Sun, Y.P., Wang, L.J.: [Effects of 5-aminolevulinic acid (ALA) on chlorophyll fluorescence dynamics of watermelon seedlings under shade condition.] — Acta Hort. Sinica 34: 901–908, 2007. [In Chin.]

    CAS  Google Scholar 

  • Sun, Y.P., Wei, Z.Y., Zhang Z.P., Wang, L.J.: [Promotion of 5-aminolevulinic acid (ALA) on high light photoinhibition of watermelon grown under shade condition.] — Acta. Bot. Boreal. Occident. Sin. 28: 1384–1390, 2008. [In Chin.]

    CAS  Google Scholar 

  • Tan, W., Liu, J., Dai, T., Jing, Q., Cao, W., Jiang, D.: Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. — Photosynthetica. 46: 21–27, 2008.

    Article  CAS  Google Scholar 

  • Terashima, I., Noguchi, K., Itoh-Nemoto, T., Park, Y.M., Kubo, A., Tanaka, K.: The cause of PSI photoinhibition at lowtemperatures in leaves of Cucumis sativus, a chilling-sensitive plant. — Physiol. Plant. 103: 295–303, 1998.

    Article  CAS  Google Scholar 

  • Tsiftsoglou, A.S., Tsamadou A.I., Papadopoulou, L.C.: Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. — Pharmacol. Therapeutics 111: 327–345, 2006.

    Article  CAS  Google Scholar 

  • von Wettstein, D., Gough, S., Kannangara, C.G.: Chlorophyll biosynthesis. — Plant Cell. 7:1039–1057, 1995.

    Article  Google Scholar 

  • Wang, L.J., Jiang, W.B., Huang, B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress condition. — Physiol. Plant. 121: 258–264, 2004a.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.J., Jiang, W.B., Liu, H., Liu, W.Q., Kang, L., Hou, X.L.: Promotion of 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. — J. Integrative Plant Biol. 47: 1084–1091, 2005a.

    Article  CAS  Google Scholar 

  • Wang, L.J., Jiang, W.B., Zhang, Z., Yao, Q.H., Matsui, H., Ohara, H.: [Biosynthesis and physiological activities of 5-aminolevulinic acid and its potential application in agriculture.] — Plant Physiol. Comm. 39:185–192, 2003. [In Chin.]

    Google Scholar 

  • Wang, L.J., Liu, W.Q., Sun, G.R., Wang, J.B., Jiang, W.B., Liu, H., Li, Z.Q., Zhuang, M.: [Effect of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of radish seedlings.] — Acta. Bot. Boreal.-Occident. Sin. 25: 488–496, 2005b. [In Chin.]

    Google Scholar 

  • Wang, L.J., Shi, W., Liu, H., Liu, W.Q., Jiang, W.B., Hou, X.L.: [Effects of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi.] — J. Nanjing Agr. University. 27: 34–38, 2004b. [In Chin.]

    Google Scholar 

  • Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., Takeuchi, Y.: Improving salt tolerance of cotton seedlings with 5-aminolevulinc acid. — Plant Growth Regul. 32: 99–103, 2000.

    Article  CAS  Google Scholar 

  • Weng, X.-Y., Xu, H.-X., Yang, Y., Peng, H.-H.: Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. — Biol. Plant. 52: 307–313, 2008.

    Article  CAS  Google Scholar 

  • Zhang, W.F., Zhang, F., Raziuddin, R., Gong, H.J., Yang, Z.M., Lu, L., Ye, Q.F., Zhou, W.J.: Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. — J. Plant Growth Regul. 27: 159–169, 2008a.

    Article  Google Scholar 

  • Zhang, Z.P., Wang, L.J., Yao, Q.H.: [Study on leaf photosynthesis and chlorophyll fluorescence of transgenic tobacco over-producing 5-aminolevulinic acid (ALA).] — Acta Bot. Boreal.-Occident. Sin. 28: 1196–1202, 2008b. [In Chin.]

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. -J. Wang.

Additional information

Acknowledgements: This research was supported by project of the Natural Science Foundation of China (30471181).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y.P., Zhang, Z.P. & Wang, L.J. Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. Photosynthetica 47, 347–354 (2009). https://doi.org/10.1007/s11099-009-0055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-009-0055-y

Additional key words

Navigation