Skip to main content

Advertisement

Log in

Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Globally, many people have been suffering from arsenic poisoning. Arsenate (AsV) exposure to twelve rice cultivars caused growth retardation, triggered production of As-chelatin biopeptides and altered activities of antioxidants along with increase in ascorbate (AsA)–glutathione (GSH) contents as a protective measure. The effects were more conspicuous in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 to attenuate oxidative-overload mediated adversities. Contrastingly, in cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64, effects were less conspicuous in terms of alterations in the said variables due to reduced generation of oxidative stress. Under As(V) imposition, the protective role of phytochelatins (PCs) were recorded where peaks height and levels of PCs (PC2, PC3 and PC4) were elevated significantly in the test seedlings with an endeavour to detoxify cells by sequestering arsenic–phytochelatin (As–PC) complex into vacuole that resulted in reprogramming of antioxidants network. Additionally, scatter plot correlation matrices, color-coded heat map analysis and regression slopes demonstrated varied adaptive responses of test cultivars, where cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64 found tolerant against As(V) toxicity. Results were further justified by hierarchical clustering. These findings could help to grow identified tolerant rice cultivars in As-prone soil with sustainable growth and productivity after proper agricultural execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

µg:

Microgram

µM:

Micromole

ANOVA:

Analysis of variance

AOX:

Ascorbate oxidase

APX:

Ascorbate peroxidase

AR:

Arsenate reductase

As:

Arsenic

AsA:

Ascorbate

AsA–GSH:

Ascorbate–glutathione

AsIII:

Arsenite

AsV:

Arsenate

CAT:

Catalase

Cd:

Cadmium

Cu:

Copper

cvs:

Cultivars

FW:

Fresh weight

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione S transferase

h:

Hour

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

mM:

Millimole

NADPH:

Nicotinamide adenine dinucleotide phosphate

PC:

Phytochelatin

PCD:

Programmed cell death

PFD:

Photon flux density

PS:

Phytochelatin synthase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SPSS:

Statistical package for social science

References

  • Agami RA (2014) Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58:341–347

    Article  CAS  Google Scholar 

  • Akram S, Siddiqui MN, Hussain BN, Al Bari MA, Mostofa MG, Hossain MA, Tran LSP (2017) Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul 36:877–888

    Article  CAS  Google Scholar 

  • Ando K, Honma M, Chiba S, Tahara S, Mizutani JK (1988) Glutathione transferase from Mucor javanicus. Agric Biol Chem 52:135–139

    CAS  Google Scholar 

  • Anjum NA, Gill S, Gill R, Hasanuzzaman M, Duarte AC, Tuteja N et al (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Schat H, Voojis R, Verkleji JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Slesak I, Jorda L, Sotnikov A, Melzer M, Miszalski Z et al (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt tolerant and salt sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34

    Article  CAS  Google Scholar 

  • Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol 135:1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268

    PubMed  PubMed Central  Google Scholar 

  • Cho M, Chardonnens AN, Dietz KJ (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S et al (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  CAS  PubMed  Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43:266–280

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • De Tullio MC, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:23213

    Article  CAS  Google Scholar 

  • Diao Y, Xu H, Li G, Yu A, Yu X, Hu W et al (2014) Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Mol Biol Rep 41:4919–4927

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Ma C, Shi W, Liu W, Lu Y, Liu Q, Luo ZB (2017) Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus X canescens. Tree Physiol 37:1697–1712

    Article  CAS  PubMed  Google Scholar 

  • Du B, Luo H, He L, Zhang L, Liu Y, Mo Z, Pan S, Tian H, Duan M, Tang X (2019) Rice seed priming with sodium selenate: effects on germination, seedling growth, and biochemical attributes. Sci Rep 9:4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J Environ Sci 22:526–532

    Article  CAS  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dörr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Kanellis AK (2013) Altered apoplastic ascorbate redox state in tobacco plants via ascorbate oxidase overexpression results in delayed dark induced senescence in detached leaves. Plant Physiol Biochem 73:154–160

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ et al (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S (2012) The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol 53:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C (2021a) Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiol Biochem 167:337–348

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Tafteh M, Roudbari N, Pishkar L, Zhang W, Wu C (2021b) Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicol Environ Saf 209:111–793

    Article  CAS  Google Scholar 

  • Grill E, Mishra S, Srivastava S, Tripathi RD (2007) Role of phytochelatins in remediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 101–146

    Chapter  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Guo JB, Xua WZ, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 200:309–313

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatin related to decrease arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155:219–225

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHM, Tanveer M, Mohsin SM, Nahar K, Soliman MH, Mahmud JA, Fujita M (2019a) Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions Int J Mol Sci 20:e3215

  • Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar N, Mahmud JA, Fujita M (2019b) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn 347:1–32

    Google Scholar 

  • Jung HI, Lee BR, Chae MJ, Kong MS, Lee CH, Kang SS, Kim YH (2017) Sulfur alleviates cadmium toxicity in rice (Oryza sativa L.) seedlings by altering antioxidant levels. J Crop Sci Biotech 20:213–220

    Article  Google Scholar 

  • Jung HI, Kong MS, Lee BR, Kim TH, Chae MJ, Lee EJ, Jung GB, Lee CH, Sung JK, Kim YH (2019) Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate-glutathione homeostasis in rice seedlings. Front Plant Sci 10:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defense system for arsenic detoxification in Indian mustard. Ecotoxic Environ Saf 72:626–634

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M et al (2014) Silicon mitigates heavy metal stress by regulating P - type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YO, Bae HJ, Cho E, Kang H (2017) Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front Plant Sci 8:683

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornyeyev D, Logan BA, Payton PR, Allen RD, Holaday AS (2003) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct Plant Biol 30:101–110

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW et al (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–522

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Majumder B, Das S, Mukhopadhyay S, Biswas AK (2018) Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability. Protoplasma 256(1):193–211

    Article  CAS  PubMed  Google Scholar 

  • Majumder B, Das S, Pal B, Biswas AK (2019) Evaluation of arsenic induced toxicity based on arsenic accumulation, translocation and its implications on physio-chemical changes and genomic instability in Indica rice (Oryza sativa L.) cultivars. Ecotoxicology 29(1):13–3

    Article  CAS  PubMed  Google Scholar 

  • Majumder B, Das S, Biswas S, Mazumdar A, Biswas AK (2020) Differential responses of photosynthetic parameters and its influence on carbohydrate metabolism in some contrasting rice (Oryza sativa L.) genotypes under arsenate stress. Ecotoxicology 29(7):912–931

    Article  CAS  PubMed  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV et al (2015) Function of glutathione peroxidases in legume root nodules. J Exp Bot 66:2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazid M, Khan TA, Khan ZH, Quddusi S, Mohammad F (2011) Occurrence, biosynthesis and potentialities of ascorbic acid in plants. Int J Plan Environ Sci 1:167–184

    CAS  Google Scholar 

  • McCarty KM, Hanh HT, Kim KW (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26(1):71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mediouni C, Ben AW, Houlne G, Chaboute ME, Jemal F (2009) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul 57:89–99

    Article  CAS  Google Scholar 

  • Mirza N, Qaisar M, Mohammad S, Arshid P, Sikander S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J 2014:921581

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt induced oxidative stress in the wild salt tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SR, Niknejad Y, Fallah H, Barari Tari D (2020) Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep 39:1041–1060

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A et al (2017) Plant glutathione transferase mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36:791–805

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Márquez-García B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell and Environ 35:454–484

    Article  CAS  Google Scholar 

  • Oser BL (1979) Hawk’s physiological chemistry. McGraw Hill, New York, pp 702–705. ISBN 0-07-099490-0

  • Ozdemir F, Bor M, Demiral T, Turkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and anti-oxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211

    Article  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey AK, Gautam A, Dubey RS (2019) Transport and detoxification of metalloids in plants in relation to plant-metalloid tolerance. Plant Gene 17:100171

    Article  CAS  Google Scholar 

  • Passaia G, Spagnolo FL, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, Mariath JE, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T et al (2006) Ascorbate oxidase dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian HF, Peng XF, Han X, Ren J, Zhan KY, Zhu M (2014) The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. Russ J Plant Physiol 61:467–475

    Article  CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    Article  CAS  PubMed  Google Scholar 

  • Rakhmankulova ZF, Shuyskaya EV, Shcherbakov AV, Fedyaev VV, Biktimerova GY, Khafisova RR, Usmanov IY (2015) Content of proline and flavonoids in the shoots of halophytes inhabiting the South Urals. Russian J Plant Physiol 62:71–79

    Article  CAS  Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EA (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediation 10:440–454

    Article  CAS  PubMed  Google Scholar 

  • Saba H, Prakash J, Singh N (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Int Res J Environ Sci 2:74–78

    Google Scholar 

  • Sadasivam S, Manickam A (1991) Biochemical methods. New Age International (P) Limited, New Delhi and Tamilnadu Agricultural University, Coimbatore, pp 1–263

  • Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885

    Article  CAS  PubMed  Google Scholar 

  • Schulz H, Haertling S, Tanneberg H (2008) The identification and quantification of arsenic induced phytochelatins-comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    Article  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue by Ellman’s reagent. Anal Biochem 25:192–208

    Article  CAS  PubMed  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsfeld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346

    Article  CAS  PubMed  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M, Arshad A (2014) Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol Plant 36:1539–1553

    Article  CAS  Google Scholar 

  • Sharma P, Dubey R (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Shukla T, Khare R, Kumar S, Lakhwani D, Sharma D, Asif MH, Trivedi PK (2018) Differential transcriptome modulation leads to variation in arsenic stress response in Arabidopsis thaliana accessions. J Hazard Mater 351:1–10

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Batish DR, Kohali RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC (2000) Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium comparison of derivatization with Ellman’s reagent and monobromobimane. J Agric Food Chem 48:4014–4019

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad M (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Talbi S, Romero-Puertas MC, Hernández A, Terrón L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environ Exp Bot 111:114–126

    Article  Google Scholar 

  • Talukdar D (2012) An induced glutathione deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Biorem Biodiv Bioavail 6:75–86

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63:1809–1822

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plánt abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, Berlin, pp 149–158

    Chapter  Google Scholar 

  • Zagorchev L, Seal C, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Sales C, Beltran J, Gómez-Cadenas A, Arbona V (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7:1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Selim HM (2006) Modeling the transport and retention of arsenic (V) in soils. Soil Sci Soc Am J 70:1677–1687

    Article  CAS  Google Scholar 

  • Zheng MZ, Cai C, Hu Y, Sun GX, Williams PN, Cui HJ, Li G, Zhao FJ, Zhu YG (2011) Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol 189:200–209

    Article  CAS  PubMed  Google Scholar 

  • Zhenyan H, Jiangchuan L, Zhang H, Ma M (2005) Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Sci 168:309–318

    Article  CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  PubMed  Google Scholar 

  • Zhu HH, Hu J, Lo-Coco F, Jin J (2019) The simpler, the better: oral arsenic for acute promyelocytic leukemia. Blood 134(7):597–605

    Article  CAS  PubMed  Google Scholar 

  • Zvobgo G, Lwalaba JLW, Sehar S, Mapodzeke JM, Shamsi IH, Zhang G (2018) The tolerance index and translocation factor were used to identify the barley genotypes with high arsenic stress tolerance. Commun Soil Sci Plant Anal 49:50–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the infrastructural assistance provided by Centre of Advanced Study, Department of Botany, University of Calcutta (UGC-CAS Phase VI and VII), DST-FIST facility. The authors are thankful to Central Instrument Facility, Bose Institute, Kolkata, India for providing HPLC facilities.

Funding

The study was supported financially by University Grants Commission (UGC), New Delhi funded Major Research Project, (F.No-43-102/2014 (SR), dt 18.01.2016).

Author information

Authors and Affiliations

Authors

Contributions

BM designed and executed the experiments; analysed the data and drafted the manuscript. SD helped in data curation. BP supervised all the statistical analysis and helped in manuscript writing. AKB conceived the study, helped to design experiments, analysed results and finalized the manuscript.

Corresponding author

Correspondence to Asok K. Biswas.

Ethics declarations

Conflict of interest

The authors have declared that they have no known competing interests.

Ethical approval

Not Applicable, since no human or animal participants are used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, B., Das, S., Pal, B. et al. Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. Biometals 35, 451–478 (2022). https://doi.org/10.1007/s10534-022-00381-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-022-00381-w

Keywords

Navigation