Skip to main content
Log in

Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST–GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Axarli I, Dhavala P, Papageorgiou AC, Labrou NE (2009a) Crystal structure of glycine max glutathione transferase in complex with glutathione: investigation of the mechanism operating by the Tau class glutathione transferases. Biochem J 422:247–256

    Article  CAS  PubMed  Google Scholar 

  • Axarli I, Dhavala P, Papageorgiou AC, Labrou NE (2009b) Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. J Mol Biol 385:984–1002

    Article  CAS  PubMed  Google Scholar 

  • Axarli I, Georgiadou C, Dhavala P, Papageorgiou AC, Labrou NE (2010) Investigation of the role of conserved residues Ser13, Asn48 and Pro49 in the catalytic mechanism of the tau class glutathione transferase from Glycine max. Biochim Biophys Acta 1804:662–667

    Article  CAS  PubMed  Google Scholar 

  • Axarli I, Muleta AW, Vlachakis D, Kossida S, Kotzia G, Maltezos A, Dhavala P, Papageorgiou AC, Labrou NE (2016) Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity. Biochem J 473:559–570

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Benekos K, Kissoudis C, Nianiou-Obeidat I, Labrou N, Madesis P, Kalamaki M, Makris A, Tsaftaris A (2010) Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. J Biotechnol 150:195–201

    Article  CAS  PubMed  Google Scholar 

  • Bilang J, Sturm A (1995) Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-azido-indole-3-acetic acid. Plant Physiol 109:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn AC, Matthaei KI, Lim C, Taylor MC, Cappello JY, Hayes JD, Anders MW, Board PG (2006) Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways. Mol Pharmacol 69:650–657

    Article  CAS  PubMed  Google Scholar 

  • Buer CS, Kordbacheh F, Truong TT, Hocart CH, Djordjevic MA (2013) Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 238:171–189

    Article  CAS  PubMed  Google Scholar 

  • Cançado GM, De Rosa VE, Fernandez JH, Maron LG, Jorge RA, Menossi M (2005) Glutathione S-transferase and aluminum toxicity in maize. Funct Plant Biol 32:1045–1055

    Article  Google Scholar 

  • Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Hell R, Zhu JK, Xiang CB (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    Article  CAS  PubMed  Google Scholar 

  • Chan C, Lam HM (2014) A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Physiol 55:570–579

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen I, Chiu MH, Cheng SF, Hsu YH, Tsai CH (2013) The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus. New Phytol 199:749–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang S-Y (2011) Expansion mechanisms and functional divergence of the glutathione S-transferase family in sorghum and other higher plants. DNA Res 18:1–16

    Article  CAS  PubMed  Google Scholar 

  • Chronopoulou E, Madesis P, Tsaftaris A, Labrou NE (2014) Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris. Appl Biochem Biotechnol 172:595–609

    Article  CAS  PubMed  Google Scholar 

  • Cicero LL, Madesis P, Tsaftaris A, Piero ARL (2015) Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry 116:69–77

    Article  PubMed  CAS  Google Scholar 

  • Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P (2005) An Arabidopsis homeodomain transcription factor, overexpressor of cationic peroxidase 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell 17:2123–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn S, Curtin C, Bézier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59:3621–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Cummins I, Wortley DJ, Sabbadin F, He Z, Coxon CR, Straker HE, Sellars JD, Knight K, Edwards L, Hughes D, Kaundun SS, Hutchings SJ, Steel PG, Edwards R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci USA 110:5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darkó É, Ambrus H, Stefanovits-Bányai É, Fodor J, Bakos F, Barnabás B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  CAS  Google Scholar 

  • Datta R, Chattopadhyay S (2015) Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. J Proteomics 126:82–93

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S (2015) Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger RNA stability to induce ethylene synthesis during stress. Plant Physiol 169:2963–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawood M, Cao F, Jahangir MM, Zhang G, Wu F (2012) Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J Hazard Mater 209:121–128

    Article  PubMed  CAS  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Denby KJ, Kumar P, Kliebenstein DJ (2004) Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 38:473–486

    Article  CAS  PubMed  Google Scholar 

  • Denby KJ, Jason LJ, Murray SL, Last RL (2005) ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Plant J 41:673–684

    Article  CAS  PubMed  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. Plos One 6:e16360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Edwards R (2009) Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem 284:21249–21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, McEwen AG, Lapthorn AJ, Edwards (2003) Forced evolution of a herbicide detoxifying glutathione transferase. J Biol Chem 278:23930–23935

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Madesis P, Mudd EA, Day A, Edwards R (2008) Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases. J Biol Chem 283:20268–20276

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Steel PG, Edwards R (2011a) Roles for glutathione transferases in antioxidant recycling. Plant Signal Behav 6:1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Sellars JD, Edwards R (2011b) The Arabidopsis phi class glutathione transferase AtGSTF2: binding and regulation by biologically active heterocyclic ligands. Biochem J 438:63–70

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP, Cummins I, Brazier-Hicks M, Skipsey M (2011) New perspectives on the metabolism and detoxification of synthetic compounds in plants. In: Organic xenobiotics and plants. Springer, Dordrecht, pp 125–148

    Chapter  Google Scholar 

  • Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL (2009) Evidence for a positive regulatory role of strawberry (Fragaria × ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. J Exp Bot 60:3043–3065

    Article  CAS  PubMed  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850

    Article  CAS  PubMed  Google Scholar 

  • Fedulova N, Raffalli-Mathieu F, Mannervik B (2010) Porcine glutathione transferase alpha 2–2 is a human GST A3-3 analogue that catalyses steroid double-bond isomerization. Biochem J 431:159–167

    Article  CAS  PubMed  Google Scholar 

  • Gallé Á, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, Györgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J Plant Physiol 166:1878–1891

    Article  PubMed  CAS  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318

    Article  CAS  PubMed  Google Scholar 

  • Gjetting T, Hagedorn PH, Schweizer P, Thordal-Christensen H, Carver TL, Lyngkjaer MF (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol Plant Microbe Interact 20:235–246

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Jiao Y, Hu WW, Pua EC (2005) Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57:53–66

    Article  CAS  PubMed  Google Scholar 

  • Gonneau M, Mornet R, Laloue M (1998) A Nicotiana plumbaginifolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase. Physiol Plant 103:114–124

    Article  CAS  Google Scholar 

  • Govindarajan S, Mannervik B, Silverman JA, Wright K, Regitsky D, Hegazy U, Purcell TJ, Welch M, Minshull J, Gustafsson C (2014) Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase. ACS Synth Biol 4:221–227

    Article  PubMed  CAS  Google Scholar 

  • Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Rylott EL, Bruce NC (2014) Arabidopsis glutathione transferases U24 and U25 exhibit a range of detoxification activities with the environmental pollutant and explosive, 2, 4, 6-trinitrotoluene. Plant Physiol 165:854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández I, Chacón O, Rodriguez R, Portieles R, López Y, Pujol M, Borrás-Hidalgo O (2009) Black shank resistant tobacco by silencing of glutathione S-transferase. Biochem Biophys Res Commun 387:300–304

    Article  PubMed  CAS  Google Scholar 

  • Honaker MT, Acchione M, Sumida JP, Atkins WM (2011) Ensemble perspective for catalytic promiscuity: calorimetric analysis of the ective site conformational landscape of a detoxification enzyme. J Biol Chem 286:42770–42776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Brunner S, Bela K, Papdi C, Szabados L, Tari I, Csiszár J (2015) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Funct Plant Biol 42:1129–1140

    Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 30:1029–1048

    Article  CAS  Google Scholar 

  • Hu T, He S, Yang G, Zeng H, Wang G, Chen Z, Huang X (2011) Isolation and characterization of a rice glutathione S-transferase gene promoter regulated by herbicides and hormones. Plant Cell Rep 30:539–549

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Zhao J, Lai B, Qin Y, Wang H, Hu G (2016) LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep 35:831–843

    Article  CAS  PubMed  Google Scholar 

  • Im Choi Y, Noh EW, Kim HJ, Shim D (2013) Overexpression of poplar GSTU51 confers selective tolerance to both mercury and methyl viologen but not to CDNB or cadmium in transgenic poplars. Plant Biotechnol Rep 7:175–184

    Article  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genom 11:73

    Article  CAS  Google Scholar 

  • Jia B, Sun M, Sun X, Li R, Wang Z, Wu J, Wei Z, DuanMu H, Xiao J, Zhu Y (2016) Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt–alkaline tolerance and methionine content. Physiol Plant 156:176–189

    Article  CAS  Google Scholar 

  • Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione s-transferase regulated by light and hormones participates in the modulation of arabidopsis seedling development. Plant Physiol 154:1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoli P, Axarli IA, Platis D, Fragoulaki M, Paine M, Hemingwayb J, Vontas J, Labrou EN (2008) Engineering sensitive glutathione transferase for the detection of xenobiotics. Biosens Bioelectron 24:498–503

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Andaya VC, Tai TH (2011) Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isoenzyme GSTZ2. Biochem J 435:373–380

    Article  CAS  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kissoudis C, Kalloniati C, Flemetakis E, Madesis P, Labrou NE, Tsaftaris A, Nianiou-Obeidat I (2015a) Maintenance of metabolic homeostasis and induction of cytoprotectants and secondary metabolites in alachlor-treated GmGSTU4-overexpressing tobacco plants, as resolved by metabolomics. Plant Biotechnol Rep 9:287–296

    Article  Google Scholar 

  • Kissoudis C, Kalloniati C, Flemetakis E, Madesis P, Labrou NE, Tsaftaris A, Nianiou-Obeidat I (2015b) Stress-inducible GmGSTU4 shapes transgenic tobacco plants metabolome towards increased salinity tolerance. Acta Physiol Plant 37:1–11

    Article  CAS  Google Scholar 

  • Klaus A, Zorman S, Berthier A, Polge C, Ramirez S, Michelland S, Seve M, Vertommen D, Rider M, Lentze N (2013) Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro. PLoS One 8:e62497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba G (2013) Redox control of plant growth and development. Plant Sci 211:77–91

    Article  CAS  PubMed  Google Scholar 

  • Kolbe A, Oliver SN, Fernie AR, Stitt M, van Dongen JT, Geigenberger P (2006) Combined transcript and metabolite profiling of Arabidopsis leaves reveals fundamental effects of the thiol-disulfide status on plant metabolism. Plant Physiol 141:412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouno T, Ezaki B (2013) Multiple regulation of Arabidopsis AtGST11 gene expression by four transcription factors under abiotic stresses. Physiol Plant 148:97–104

    Article  CAS  PubMed  Google Scholar 

  • Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013a) Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep 31:569–580

    Article  CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013b) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248:228–237

    Article  PubMed  CAS  Google Scholar 

  • Labrou NE, Kotzia GA, Clonis YD (2004) Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I. Protein Eng Des Sel 17:741–748

    Article  CAS  PubMed  Google Scholar 

  • Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 32:186–194

    Article  CAS  PubMed  Google Scholar 

  • Lallement PA, Meux E, Gualberto JM, Prosper P, Didierjean C, Saul F, Haouz A, Rouhier N, Hecker A (2014) Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants. Biochem J 462:39–52

    Article  CAS  PubMed  Google Scholar 

  • Lallement PA, Meux E, Gualberto JM, Dumarcay S, Favier F, Didierjean C, Saul F, Haouz A, Morel-Rouhier M, Gelhaye E, Rouhier N, Hecker A (2015) Glutathionyl-hydroquinone reductases from poplar are plastidial proteins that deglutathionylate both reduced and oxidized glutathionylated quinones. FEBS Lett 589:37–44

    Article  CAS  PubMed  Google Scholar 

  • Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zenga QY (2009) Extensive functional diversification of the populus glutathione s-transferase supergene family. Plant Cell 21:3749–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan T, Wang XR, Zeng QY (2013) Structural and functional evolution of positively selected sites in pine glutathione S-transferase enzyme family. J Biol Chem 288:24441–24451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lederer B, Boger P (2003) Binding and protection of porphyrins by glutathione S-transferases of Zea mays L. Biochimica et Biophysica Acta—Gen Subj 1621:226–233

    Article  CAS  Google Scholar 

  • Liao M, Li Y, Wang Z (2009) Identification of elicitor responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809–2819

    Article  CAS  PubMed  Google Scholar 

  • Lim JD, Hahn SJ, Yu CY, Chung IM (2005) Expression of the glutathione S-transferase gene (NT107) in transgenic Dianthus superbus. Plant Cell Tissue Organ Cult 80:277–286

    Article  CAS  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–522

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Stewart CN (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY (2013) Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol 161:773–786

    Article  CAS  PubMed  Google Scholar 

  • Liu HJ, Tang ZX, Han XM, Yang ZL, Zhang FM, Yang HL, Liu YJ, Zeng QY (2015) Divergence in enzymatic activities in the Soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Mol Biol Evol 32:2844–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Hu R, Palla KJ, Tuskan GA, Yang X (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77

    Article  CAS  PubMed  Google Scholar 

  • Lo Cicero L, Catara V, Strano CP, Bella P, Madesis P, Lo Piero AR (2017) Over-expression of CsGSTU promotes tolerance to the herbicide alachlor and resistance to Pseudomonas syringae pv. tabaci in transgenic tobacco. Biol Plant 61:169–177

    Article  CAS  Google Scholar 

  • Marrs KA, Walbot V (1997) Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiol 113:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid Redox Signal 16:471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in arabidopsis. Plant Cell 20:768–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee AK, Carp MJ, Zuchman R, Ziv T, Horwitz BA, Gepstein S (2010) Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 73:709–720

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  PubMed  CAS  Google Scholar 

  • Musdal Y, Mannervik B (2015) Substrate specificities of two tau class glutathione transferases inducible by 2, 4, 6-trinitrotoluene in poplar. Biochimica et Biophysica Acta (BBA)—Gen Subj 1850:1877–1883

    Article  CAS  Google Scholar 

  • Nakabayashi R, Yonekura, Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379

    Article  CAS  PubMed  Google Scholar 

  • Neuefeind T, Huber R, Dasenbrock H, Prade L, Bieseler B (1997) Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. J Mol Biol 274:446–453

    Article  CAS  PubMed  Google Scholar 

  • Pang S, Duan L, Liu Z, Song X, Li X, Wang C (2012) Co-induction of a glutathione-S-transferase, a glutathione transporter and an ABC transporter in maize by xenobiotics. PloS One 7:e40712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei D, Ma H, Zhang Y, Ma Y, Wang W, Geng H, Wu J, Li C (2011) Virus-induced gene silencing of a putative glutathione S-transferase gene compromised Ol-1-mediated resistance against powdery mildew in tomato. Plant Mol Biol Rep 29:972–978

    Article  CAS  Google Scholar 

  • Pennington HG, Gheorghe DM, Damerum A, Pliego C, Spanu PD, Cramer R, Bindschedler LV (2016) Interactions between the powdery mildew effector BEC1054 and barley proteins identify candidate host targets. J Proteome Res 15:826–839

    Article  CAS  PubMed  Google Scholar 

  • Rahantaniaina M-S, Tuzet A, Mhamdi A, Noctor G (2013) Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci 4:477

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinemer P, Prade L, Hof P, Neuefeind T, Huber R, Zettl R, Palme K, Schell J, Koelln I, Bartunik HD (1996) Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 Å resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol 255:289–309

    Article  CAS  PubMed  Google Scholar 

  • Rezaei MK, Shobbar ZS, Shahbazi M, Abedini R, Zare S (2013) Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. J Plant Physiol 170:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Ribot C, Hirsch J, Balzergue S, Tharreau D, Notteghem JL, Lebrun MH, Morel JB (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165:114–124

    Article  CAS  PubMed  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Cerveau D, Couturier J, Reichheld JP, Rey P (2015) Involvement of thiol-based mechanisms in plant development. Biochimica et Biophysica Acta (BBA)—Gen Subj 1850:1479–1496

    Article  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S (2013) A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) FK Meyer. Plant J 73:131–142

    Article  CAS  PubMed  Google Scholar 

  • Schultz T, van Eck L, Botha AM (2015) Phi class glutathione S transferase is involved in Dn1-mediated resistance. Physiol Plant 154:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Sahoo A, Devendran R, Jain M (2014) Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PloS One 9:e92900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skipsey M, Cummins I, Andrews CJ, Jepson I, Edwards R (2005) Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotechnol J 3:409–420

    Article  CAS  PubMed  Google Scholar 

  • Skopelitou K, Muleta AW, Papageorgiou AC, Chronopoulou E, Labrou NE (2015) Catalytic features and crystal structure of a tau class glutathione transferase from Glycine max specifically upregulated in response to soybean mosaic virus infections. Biochimica et Biophysica Acta (BBA)—Proteins Proteom 1854:166–177

    Article  CAS  Google Scholar 

  • Skopelitou K, Muleta AW, Papageorgiou AC, Chronopoulou EG, Pavli O, Flemetakis E, Skaracis GN, Labrou NE (2017) Characterization and functional analysis of a recombinant tau class glutathione transferase GmGSTU2-2 from Glycine max. Int J Biol Macromolec 94:802–812

  • Smith AP, DeRidder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  CAS  PubMed  Google Scholar 

  • Su T, Xu J, Li Y, Lei L, Zhao L, Yang H, Feng J, Liu G, Ren D (2011) Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23:364–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li H, Huang JR (2012) Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant 5:387–400

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad M (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I (2002) Over-expression of ζ glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Mol Breed 9:93–101

    Article  CAS  Google Scholar 

  • Thatcher LF, Carrie C, Andersson CR, Sivasithamparam K, Whelan J, Singh KB (2007) Differential gene expression and subcellular targeting of Arabidopsis glutathione S-transferase F8 is achieved through alternative transcription start sites. J Biol Chem 282:28915–28928

    Article  CAS  PubMed  Google Scholar 

  • Tian M, von Dahl CC, Liu PP, Friso G, van Wijk KJ, Klessig DF (2012) The combined use of photoaffinity labeling and surface plasmon resonance based technology identifies multiple salicylic acid binding proteins. Plant J 72:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V, Patel MK, Chaturvedi AK, Mishra A, Jha B (2016) Functional characterization of the Tau class glutathione-s-transferases gene SbGSTU promoter of Salicornia brachiata under salinity and osmotic stress. PLoS One 11:e0148494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi A, Indoliya Y, Tiwari M, Tiwari P, Srivastava D, kumar Verma P, Verma S, Gautam N, Chakrabarty D (2014) Transformed yeast (Schizosaccharomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium. Metallomics 6:1549–1557

    Article  CAS  PubMed  Google Scholar 

  • Uslu VV, Grossmann G (2016) The biosensor toolbox for plant developmental biology. Curr Opin Plant Biol 29:138–147

    Article  CAS  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, van der Heijdt WH, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact 21:1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Waskiewicz A, Gładysz O, Szentner K, Golinski P (2014) Role of glutathione in abiotic stress tolerance. In: Oxidative damage to plants antioxidant networks and signaling, pp 149–181

  • Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA 108:7339–7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Tian YS, Xing XJ, Peng RH, Zhu B, Gao JJ, Yao QH (2016) Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis. Physiol Plant 156:164–175

    Article  CAS  Google Scholar 

  • Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014a) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult 117:99–112

    Article  CAS  Google Scholar 

  • Yang Q, Liu YJ, Zeng QY (2014b) Biochemical functions of the glutathione transferase supergene family of Larix kaempferi. Plant Physiol Biochem 7:99–107

    Article  CAS  Google Scholar 

  • Zaffagnini M, Bedhomme M, Lemaire SD, Trost P (2012) The emerging roles of protein glutathionylation in chloroplasts. Plant Sci 185:86–96

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu J (2011) Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J Hazard Mater 189:357–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Castell-Miller C, Dahl S, Steffenson B, Kleinhofs A (2008) Parallel expression profiling of barley-stem rust interactions. Funct Integr Genomics 8:187–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 260:1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20:576–585

    Article  CAS  PubMed  Google Scholar 

  • Zhao CR, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H (2009) Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biol 9:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5:9018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the grant programs THALES (Grant Number 380236) and ARISTEIA II (Grant Number 5383) co-funded by the European Union—European Social Fund and National Resources. NEL acknowledges financial support by Bayer CropScience AG, Germany (Grants4Targets 2016-2-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Nianiou-Obeidat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nianiou-Obeidat, I., Madesis, P., Kissoudis, C. et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36, 791–805 (2017). https://doi.org/10.1007/s00299-017-2139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2139-7

Keywords

Navigation