Skip to main content
Log in

Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Two mixed bacterial cultures (CB-BT and CI-AT) degraded phenanthrene when it was: (i) in the presence of either hexadecane as a non aqueous phase liquid or a montmorillonite–Al(OH)x-humic acid complex as a model organo-mineral matrix; (ii) sorbed to the complex, either alone or in the presence of hexadecane. The cultures had different kinetic behaviours towards phenanthrene with or without hexadecane. The degradation of Phe alone as well as that of Phe in hexadecane ended in 8 and 15 days with CB-BT and CI-AT cultures, respectively. Hexadecane increased Phe bioavailability for CI-AT bacteria which degraded Phe according to first-order kinetics. The same effect was observed for CB-BT bacteria, but with an initial 2 days lag phase and in accordance with zero-order kinetics. The presence of hexadecane did not affect the degradation of phenanthrene sorbed and aged on the complex by CI-AT culture. This capability was exhibited also after experimental aging of 30 days. The dynamics of the bacterial community composition was investigated through PCR-DGGE (denaturing gradient gel electrophoresis) of 16S rRNA gene fragments. Individual bands changed their intensity during the incubation time, implying that particular microbe’s relative abundance changed according to the culture conditions. Isolation of phenanthrene and/or hexadecane degraders was in accord with cultivation-independent data. Growth-dependent changes in the cell surface hydrophobicity of the two cultures and of the isolates suggested that modulation of cell surface hydrophobicity probably played an important role for an efficient phenanthrene assimilation/uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DGGE:

Denaturing gradient gel electrophoresis

k:

Degradation rate or degradation rate constant

MAH:

Montmorillonite–Al(OH)x-humic acid complex

M1, M2, M3:

Microcosms

NAPL:

Non aqueous phase liquid

PAH:

Polycyclic aromatic hydrocarbon

Phe:

Phenanthrene

Phe-MAH:

Phenanthrene sorbed to Montmorillonite–Al(OH)x-humic acid complex

Phe-NAPL:

Phenanthrene dissolved in hexadecane

Phe-NAPL-MAH:

Phenanthrene sorbed to montmorillonite–Al(OH)x-humic acid complex in the presence of hexadecane

References

  • Alexander M (2000) Aging, bioavailability and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Amellal N, Portal JM, Vogel T, Berthelin J (2001) Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation 12:49–57

    Article  CAS  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’ Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412

    Article  CAS  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH- sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  CAS  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  CAS  Google Scholar 

  • Baveye P, Bladon R (1999) Bioavailability of organic xenobiotics in the environment: a critical perspective. In: Baveye P, Block JC, Gonchurak VV (eds) Bioavailability of organic xenobiotics in the environment. NATO ASI Series 2. Environment, vol 64. Kluwer Academic Publishers, Dordrecht, p 227

  • Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bredholt H, Bruheim P, Potocky M, Eimhjellen K (2002) Hydrophobicity development, alkane oxidation, and crude-oil emulsification in a Rhodococcus species. Can J Microbiol 48:295–304

    Article  CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    Article  CAS  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447

    CAS  Google Scholar 

  • Friedrich M, Grosser RG, Kern EA, Inskeep WP, Ward DM (2000) Effect of model sorptive phases on Phe degradation: molecular analysis of enrichments and isolated suggests selection based on bioavailability. Appl Environ Microbiol 66:2703–2710

    Article  CAS  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    CAS  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8: 268–273

    Article  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261–274

    Article  CAS  Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polyciclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459

    Article  CAS  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycylic aromatic hydrocarbons. Appl Microbiol Biotechnol 41:267–273

    Article  Google Scholar 

  • Kunz DA, Chapman PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new function of the TOL (pWWO) plasmid. J Bacteriol 146:179–191

    CAS  Google Scholar 

  • Müller AK, Westergaard K, Christensen S, Sørensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nocerino G (2003) Biodegradabilità e biodisponibilità del fenantrene nel suolo: studi con sistemi modello. PhD thesis (in Italian), Università degli Studi di Napoli Federico II, Naples, Italy

  • Oberbremer A, Muller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32:485–489

    Article  CAS  Google Scholar 

  • Ortega-Calvo JJ, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64:3123–3126

    CAS  Google Scholar 

  • Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK–1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40:470–475

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediment-a perspective mechanism, consequences and assessment. Environ Poll 108:103–112

    Article  CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrofobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Ruggiero P, Pizzigallo MDR, Crecchio C (2002) Effects of soil abiotic processes on the bioavailability of anthropogenic organic residues. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Soil mineral-organic matter-microorganism interactions and ecosystem health, Development in Soil Science, vol 28B. Elsevier, Amsterdam, p 95

  • Russo F, Rao MA, Gianfreda L (2005) Bioavailability of phenanthrene in the presence of birnessite-mediated catechol polymers. Appl Microbiol Biotechnol 68:131–139

    Article  CAS  Google Scholar 

  • Sandrin TR, Kight WB, Maier WJ, Maier RM (2006) Influence of nonaqueous phase liquid (NAPL) on biodegradation of phenanthrene. Biodegradation 17:423–435

    Article  CAS  Google Scholar 

  • Theng BK, Aislabie G, Fraser JR (2001) Bioavailability of phenanthrene intercalated into an alkylammonium-montmorillonite clay. Soil Biol Biochem 33:845–848

    Article  CAS  Google Scholar 

  • Vacca DJ, Bleam WF, Hockey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71:3797–3805

    Article  CAS  Google Scholar 

  • van Oss CJ (1994) Interfacial forces in aqueous media. Marcel Dekker, New York, NY

    Google Scholar 

  • Violante A, Arienzo M, Sannino F, Colombo C, Piccolo A, Gianfreda L (1999) Formation and characterization of OH-Al- humate-montmorillonite complexes. Organic Geochem 30:461–468

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by grants from “Ministero dell’Università e della Ricerca” (Italy) Programs of National Interest (PRIN 2001) “Caratterizzazione di Popolazioni Microbiche Capaci di Utilizzare Inquinanti Organici Poco Solubili in Fase Acquosa (NAPL)”. Authors thank Prof. C. Colombo (University of Molise) for providing the synthetic Montmorillonite–Al(OH)x-Humic acid complex and S. Foiani (University of Milan) for technical support. DISSPA Contribution No = 132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Andreoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalca, L., Rao, M.A., Bernasconi, S. et al. Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase. Biodegradation 19, 1–13 (2008). https://doi.org/10.1007/s10532-007-9109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9109-7

Keywords

Navigation