Skip to main content
Log in

Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Municipal solid waste landfills are widely used as a waste management tool and landfill microbiology is at the core of waste degradation in these ecosystems. This review investigates the microbiology of municipal solid waste landfills, focusing on the current state of knowledge pertaining to microbial diversity and functions facilitating in situ waste bioprocessing, as well as ecological factors influencing microbial dynamics in landfills. Bioprocessing of waste in municipal landfills emanates from substrate metabolism and co-metabolism by several syntrophic microorganisms, resulting in partial transformation of complex substrates into simpler polymeric compounds and complete mineralisation into inorganic salts, water and gases including the biofuel gas methane. The substrate decomposition is characterised by evolution and interactions of different bacterial, archaeal and fungal groups due to prevailing biotic and abiotic conditions in the landfills, allowing for hydrolytic, fermentative, acetogenic and methanogenic processes to occur. Application of metagenomics studies based on high throughput Next Generation Sequencing technique has advanced research on profiling of the microbial communities in municipal solid waste landfills. However, functional diversity and bioprocess dynamics, as well as key factors influencing the in situ bioprocesses involved in landfill waste degradation; the very elements that are key in determining the efficiency of municipal landfills as tools of waste management, remain ambiguous. Such gaps also hinder progressive understanding of fundamentals that underlie technology development based on waste biodegradation, and exploration of municipal waste as a bioresource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Sang et al. (2012)

Fig. 2

Similar content being viewed by others

References

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Bareither CA, Wolfe GL, McMahon KD, Benson CH (2013) Microbial diversity and dynamics during methane production from municipal waste. Waste Manag 33:1982–1992

    CAS  PubMed  Google Scholar 

  • Barlaz MA, Schaefer DM, Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barlaz MA, Ham RK, Schaefer DM, Isaacson R (2009) Methane production from municipal refuse: a review of enhanced techniques and microbial dynamics. Crit Rev Environ Sci Technol 19:557–584

    Google Scholar 

  • Bastida F, Kandeler E, Hernández T, García C (2008) Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb Ecol 55:651–661

    PubMed  Google Scholar 

  • Beeman RE, Suflita JM (1987) Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate. Microb Ecol 14:39–54

    CAS  PubMed  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    CAS  PubMed  Google Scholar 

  • Buivid MG, Wise DL, Blanchet MJ, Remedios EC, Jenkins BM (1981) Fuel gas enhancement by controlled landfilling of municipal solid waste. Resour Conserv 6:3–20

    CAS  Google Scholar 

  • Cardinalli-Rendez J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL (2012) Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Biores Technol 229:373–383

    Google Scholar 

  • Cardinalli-Rendez J, Rojas-Ojeda P, Nascimento AMA, Sanz JL (2016) Proteolytic bacterial dominance in a full-scale municipal solid waste anaerobic reactor assessed by 454 pyrosequencing technology. Chemosphere 146:519–525

    Google Scholar 

  • Chen YC (2016) Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach. Waste Manag 58:408–414

    CAS  PubMed  Google Scholar 

  • Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003a) Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotech Lett 25:1563–1569

    CAS  Google Scholar 

  • Chen AC, Imachi H, Sekiguchi Y, Ohashi A, Harada H (2003b) Achaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 25:719–724

    CAS  PubMed  Google Scholar 

  • Chroni C, Kyriacou A, Georgaki I, Manios T, Kotsou M, Lasaridi K (2009) Microbial characterization during composting of biowaste. Waste Manag 29:1520–1525

    CAS  PubMed  Google Scholar 

  • Cossu R, Morello L, Raga R, Cerminara G (2016) Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Manag 55:83–92

    CAS  PubMed  Google Scholar 

  • Cuadros-Orellana S, Leite LR, Smith A, Medeiros JD, Badotti F, Fonseca PLC, Vaz ABM, Oliveira G, Goes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genomics and Biology 3:110

    Google Scholar 

  • Dao HTN, Kuroda K, Nakahara N, Danshita T, Hatamoto M, Yamaguchi T (2016) 16S rRNA gene-based comprehensive analysis of microbial community compositions in a full-scale leachate treatment system. J Biosci Bioeng 122:708–715

    CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–14

    Google Scholar 

  • Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerova K (2015) Anaerobic fungi and their potential for biogas production. In: Guebitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas science and technology. Springer, London, pp 1–200

    Google Scholar 

  • Ejlertsson J, Johansson E, Karlsson A, Meyerson E, Svensson H (1996) Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie Van Leeuwenhoek 69:6–74

    Google Scholar 

  • Fang CR, Yao J, Zheng Y-G, Jiang C-J, Hua L-F, Wu Y-Y, Shen DS (2010) Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor. Int Biodeterior Biodegrad 64:442–446

    CAS  Google Scholar 

  • Fei X, Zekkos D, Raskin L (2015) Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste. Waste Manag 36:184–190

    CAS  PubMed  Google Scholar 

  • Fernandez-Gonzalez JM, Grindlay AL, Serrano-Bernardo F, Rodríguez-Rojas MI, Zamorano M (2017) Economic and environmental review of waste-to-energy systems for municipal solid waste management in medium and small municipalities. Waste Manag 67:360–374

    CAS  PubMed  Google Scholar 

  • Finlay BJ, Fenchel T (1991) An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol Ecol 85:169–180

    Google Scholar 

  • Fourie ABJ, Morris WF (2004) Measured gas emissions from four landfills in South Africa and some implications for landfill design and methane recovery in semi-arid climates. Waste Manag Res 22:440–453

    CAS  PubMed  Google Scholar 

  • Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I (2014) Changes in the microbial communities during co-composting of digestates. Waste Manag 34:632–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2011) Isolation, identification and culturing optimization of indigenous fungal isolates as a potential bioconversion agent of municipal solid waste. Ann Environ Sci 5:23–34

    CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey X, Jamaluddin AK, Awasthi MK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:1–12

    Google Scholar 

  • Ge S, Liu L, Xue Q, Yuan Z (2016) Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors. Waste Manag 55:93–98

    CAS  PubMed  Google Scholar 

  • Gomez AM, Yannarell AC, Sims GK, Cadavid-Restrepo G, Herrera CXM (2011) Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biol Biochem 43:1275–1284

    CAS  Google Scholar 

  • Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1:181–185

    PubMed  PubMed Central  Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    CAS  PubMed  Google Scholar 

  • Gupta J, Rathour R, Kumar M, Thakur IS (2017) Metagenomic analysis of microbial diversity in landfill lysimeter soil of Ghazipur Landfill Site, New Delhi, India. Genome Announc 5:01104

    Google Scholar 

  • Hamad I, Ranque S, Azhar EI, Yasir M, Jiman-Fatani AA, Tissot-Dupont H, Raoult D, Bittar F (2017) Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci Rep 7:16788

    PubMed  PubMed Central  Google Scholar 

  • Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A (2001) Microbial characterisation during composting of municipal solid waste. Biores Technol 80:217–225

    CAS  Google Scholar 

  • He Y, Xie K, Xu P, Huang X, Gu W, Zhang F, Tang S (2013) Evolution of microbial community diversity and enzymatic activity during composting. Res Microbiol 164:189–198

    CAS  PubMed  Google Scholar 

  • Hrad M, Huber-Humer M (2017) Performance and completion assessment of an in-situ aerated municipal solid waste landfill—final scientific documentation of an Austrian case study. Waste Manag 63:397–409

    PubMed  Google Scholar 

  • Huang L-N, Zhou H, Chen Y-Q, Luo S, Lan C-Y, Qu L-H (2002) Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Ecol 214:235–240

    CAS  Google Scholar 

  • Huang L-N, Chen Y-Q, Zhou H, Luo S, Lan C-Y, Quo L (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177

    CAS  PubMed  Google Scholar 

  • Huang L-N, Zhou H, Zhu S, Qu L-H (2004) Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol Ecol 50:175–183

    CAS  PubMed  Google Scholar 

  • Huang L-N, Zhu S, Zhou H, Qu L-H (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242:297–303

    CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Biores Technol 143:525–530

    CAS  Google Scholar 

  • Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS (2018) Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 40:89–110

    Google Scholar 

  • Kallistova AU, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola J-KM, Kulomaa MS, Rintala JA, Nozhevnikova AN (2007) Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill. Microb Ecol 54:637–645

    PubMed  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid waste in a high-solids anaerobic digester. Waste Manag Res 13:123–136

    CAS  Google Scholar 

  • Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7(744):1–16

    Google Scholar 

  • Kielak AM, Castellane TCL, Campanharo JC, Colnago LA, Costa OYA, da Silva MLC, van Veen JA, Lemos EGM, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:41193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    CAS  Google Scholar 

  • Korai MS, Mahar RB, Uqaili MA (2017) The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renew Sustain Energy Rev 72:338–353

    CAS  Google Scholar 

  • Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36:56–68

    CAS  PubMed  Google Scholar 

  • Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag 69:407–422

    CAS  PubMed  Google Scholar 

  • Kumar S, Chiemchaisri C, Mudhoo A (2011) Bioreactor landfill technology in municipal solid waste treatment: an overview. Crit Rev Biotechnol 31:77–97

    CAS  PubMed  Google Scholar 

  • Laloui-Carpentier W, Li T, Vigneron V, Mazéas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek 89:423–434

    PubMed  Google Scholar 

  • Lenhart K, Bunge B, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046

    PubMed  Google Scholar 

  • Leven L, Eriksson ARB, Schnurer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    CAS  PubMed  Google Scholar 

  • Liu Y, Xing P, Liu J (2017) Environmental performance evaluation of different municipal solid waste management scenarios in China. Resour Conserv Recycl 125:98–106

    Google Scholar 

  • Lockhart RJ, Van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72:5659–5661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes dos Santos A, Peixoto R, Rosado AS (2009) New approaches to understanding microbial diversity in wastewater, landfills and leachate treatment. Oecol Brasiliensis 13:631–648

    Google Scholar 

  • Lou J, Yang L, Wang H, Wu L, Xu J (2018) Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. PeerJ 6:e4514

    PubMed  PubMed Central  Google Scholar 

  • Lu MC, Chen YY, Chiou MR, Chen MY, Fan HJ (2016) Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Manag 55:257–264

    CAS  PubMed  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    CAS  PubMed  Google Scholar 

  • Malinauskaite J, Jouhara H, Czajczynska D, Stanchev P, Katsou E, Rostkowski P, Thorne RJ, Colon RJ, Ponsa S, Al-Mansour F, Anguilano L, Krzyzynska R, Lopez IC, Vlasopoulos A, Spencer N (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044

    Google Scholar 

  • Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P (2017) Review: Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83

    CAS  Google Scholar 

  • Mazzei L, Musiani F, Ciurli S (2017) Urease. In: Zamble D, Rowińska-Żyrek M, Kozłowski H (eds) RSC metallobiology. Royal Society of Chemistry, London.

    Google Scholar 

  • McDonald JE, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ Microbiol 10:1310–1319

    CAS  PubMed  Google Scholar 

  • McDonald JE, Allison HE, McCarthy AJ (2010) Composition of the landfill microbial community as determined by application of domain- and group-specific 16S and 18S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 76:1301–1306

    CAS  PubMed  Google Scholar 

  • McDonald JE, Houghton JNI, Rooks DJ, Allison HE, McCarthy AJ (2012) The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for Fibrobacters. Environ Microbiol 14:1077–1087

    CAS  PubMed  Google Scholar 

  • Moya D, Aldásb C, Lópeza G, Kaparajuc P (2017) Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies. Energy Procedia 134:286–295

    Google Scholar 

  • Muenmee S, Chiemchaisri W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255

    CAS  Google Scholar 

  • Musson SE, Townsend GT (2009) Pharmaceutical compound content of municipal solid waste. J Hazard Mater 162:730–735

    CAS  PubMed  Google Scholar 

  • Mwaikono KS, Maina S, Sebastian A, Schilling M, Kapur V, Gwakisa P (2016) High-throughput sequencing of 16S rRNA gene reveals substantial bacterial diversity on the municipal dumpsite. BMC Microbiol 16:145–157

    PubMed  PubMed Central  Google Scholar 

  • Naveen BP, Mahapatra DM, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12

    CAS  PubMed  Google Scholar 

  • Noor ZZ, Yusuf RO, Abba AH, Hassan MAA, Din MFM (2013) An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew Sustain Energy Rev 20:378–384

    Google Scholar 

  • O’Dwyer J, Walshe D, Byrne KA (2018) Wood waste decomposition in landfills: an assessment of current knowledge and implications for emissions reporting. Waste Manag 73:181–188

    PubMed  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos I (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil BS, Agnes AC, Singh DN (2017) Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag Res 3:301–312

    Google Scholar 

  • Perez-Leblic MI, Turmero A, Hernández M, Hernández AJ, Pastor J, Ball AS, Rodríguez J, Arias ME (2012) Influence of xenobiotic contaminants on landfill soil microbial activity and diversity. J Environ Manag 95:S285–S290

    CAS  Google Scholar 

  • Pignataro A, Moscatelli MC, Mocali S, Grego S, Benedettia A (2012) Assessment of soil microbial functional diversity in a coppiced forest system. Appl Soil Ecol 62:115–123

    Google Scholar 

  • Poggi-Varaldo HM, Rodriguez-Vazquez R, Fernandez-Villagomez G, Esparza-Garcia F (1997) Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl Microbiol Biotechnol 47:284–291

    CAS  Google Scholar 

  • Pourcher AM, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiol Ecol 34:229–241

    CAS  PubMed  Google Scholar 

  • Pubule J, Blumberga A, Romagnoli F, Blumberga D (2015) Finding an optimal solution for biowaste management in the Baltic States. J Clean Prod 88:214–223

    Google Scholar 

  • Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172

    CAS  PubMed  Google Scholar 

  • Rajaeifar MA, Ghanavati H, Dashti BB, Heijungs R, Aghbashlo M, Tabatabaei M (2017) Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review. Renew Sustain Energy Rev 79:414–439

    Google Scholar 

  • Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281

    CAS  PubMed  Google Scholar 

  • Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14:337–346

    CAS  Google Scholar 

  • Rolf D (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Google Scholar 

  • Sang NN, Soda S, Ishigaki T, Ike M (2012) Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J Biosci Bioeng 114:243–250

    PubMed  Google Scholar 

  • Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng 109:130–137

    CAS  PubMed  Google Scholar 

  • Sekhohola LM, Igbinigie EE, Cowan AK (2013) Biological degradation and solubilisation of coal. Biodegradation 24:305–318

    CAS  PubMed  Google Scholar 

  • Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: An overview. Indian J Clin Biochem 29:269–278

    CAS  PubMed  Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomics data. Front Plant Sci 5:1–14

    Google Scholar 

  • Shen D, Yin J, Yu X, Wang M, Long Y, Shentu J, Chen T (2017) Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Biores Technol 227:125–132

    CAS  Google Scholar 

  • Sinclair L (2016) Molecular methods for microbial ecology: Developments, applications and results. PhD thesis, Uppsala University, Uppsala.

  • Singh CK, Kumar A, Roy SS (2018) Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci Rep 8:2913

    PubMed  PubMed Central  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores Technol 127:500–507

    CAS  Google Scholar 

  • Sivaramanan S (2014) Isolation of cellulolytic fungi and their degradation on cellulosic agricultural wastes. J Acad Ind Res 2:458–463

    CAS  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2018) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 69:10–20

    CAS  Google Scholar 

  • Song L, Wang Y, Tang W, Lei Y (2015a) Archaeal community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:6125–6137

    CAS  PubMed  Google Scholar 

  • Song L, Wang Y, Tang W, Lei Y (2015b) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:7745–7756

    CAS  PubMed  Google Scholar 

  • Song L, Wang Y, Zhao H, Long DT (2015c) Composition of bacterial and archaeal communities during landfill refuse decomposition processes. Microbiol Res 181:105–111

    PubMed  Google Scholar 

  • Stamps BW, Lyles CN, Suflita JM, Masoner JR, Cozzarelli IM, Kolpin DW, Stevenson BS (2016) Municipal solid waste landfills harbour distinct microbiomes. Front Microbiol 7:1–11

    Google Scholar 

  • Tan ST, Ho WS, Hashim H, Lee CT, Taib MR, Ho CS (2015) Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers Manag 102:111–120

    Google Scholar 

  • Tao Y, Zhou Y, He X, Hu X, Li D (2014) Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int J Syst Evol Microbiol 64:95–100

    CAS  PubMed  Google Scholar 

  • Tong H, Yin K, Giannis A, Ge L, Wang JY (2015) Influence of temperature on carbon and nitrogen dynamics during in situ aeration of aged waste in simulated landfill bioreactors. Biores Technol 192:149–156

    CAS  Google Scholar 

  • Tozlu A, Özahi E, Abuşoğlu A (2016) Waste to energy technologies for municipal solid waste management in Gaziantep. Renew Sustain Energy Rev 54:809–815

    Google Scholar 

  • Uz I, Rasche ME, Townsend ET, Lindner AS (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. Biol Lett 270:S202–S205

    Google Scholar 

  • van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049–2053

    PubMed  PubMed Central  Google Scholar 

  • van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Google Scholar 

  • van Wyk PHJ (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177

    PubMed  Google Scholar 

  • Vargas-Garcia MC, Suárez-Estrella FM, López J, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30:771–778

    CAS  PubMed  Google Scholar 

  • Vergara SE, Tchobanoglous G (2012) Municipal solid waste and the environment: a global perspective. Annu Rev Environ Resour 37:277–303

    Google Scholar 

  • Vetrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 9:e89108

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Cui H, Shi J, Zhao X, Zhao Y, Wei Z (2015a) Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Biores Technol 198:395–402

    CAS  Google Scholar 

  • Wang Y, Tang W, Qiao J, Song L (2015b) Occurrence and prevalence of antibiotic resistance in landfill leachate. Environ Sci Pollut Res 22:12525–12533

    CAS  Google Scholar 

  • Wang X, Cao A, Zhao G, Zhou C, Xu R (2017) Microbial community structure and diversity in a municipal solid waste landfill. Waste Manag 66:79–87

    PubMed  Google Scholar 

  • Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65

    Google Scholar 

  • William EE, William SO, Wang YS, Barlaz M (1997) Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ Sci Technol 31:911–917

    Google Scholar 

  • Wu D, Huang Z, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49:4122–4128

    CAS  PubMed  Google Scholar 

  • Ximenes FA, Cowie AL, Barlaz MA (2018) The decay of engineered wood products and paper excavated from landfills in Australia. Waste Manag 74:312–322

    CAS  PubMed  Google Scholar 

  • Xu SY, Karthikeyan OP, Selvam A, Wong JWC (2014) Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: effect of different leachate recirculation practices. Biores Technol 168:41–48

    CAS  Google Scholar 

  • Xu S, Lu W, Liu Y, Ming Z, Liu Y, Meng R, Wang H (2017) Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq). Waste Manag 63:41–48

    CAS  PubMed  Google Scholar 

  • Yan Y, Fotidis IA, Tian H, Khoshnevisan B, Treu L, Tsapekos P, Angelidaki I (2019) Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: focusing on microbial community dynamics. Biores Technol 286:121–376

    Google Scholar 

  • Yang R, Xu Z, Chai J (2018a) A review of characteristics of landfilled municipal solid waste in several countries: physical composition, unit weight, and permeability coefficient. Pol J Environ Stud 27:2425–2435

    Google Scholar 

  • Yang L, Lou J, Wang H, Wu L, Xu J (2018b) Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Sci Total Environ 633:360–371

    CAS  PubMed  Google Scholar 

  • Yesiller N, Hanson JL, Liu Y-L (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131:1330–1340

    Google Scholar 

  • Yin J, Yu X, Wang K, Shen D (2016) Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int J Hydrogen Energy 41:21713–21720

    CAS  Google Scholar 

  • Zainun MY, Simarani K (2018) Metagenomics profiling for assessing microbial diversity in both active and closed landfills. Sci Total Environ 616–617:269–278

    PubMed  Google Scholar 

  • Zamanzadeh M, Hagen LH, Svensson K, Linjordet K (2016) Anaerobic digestion of food waste e Effect of recirculation and temperature on performance and microbiology. Water Res 96:246–254

    CAS  PubMed  Google Scholar 

  • Zhang X-H, Xu Y-B, He X-L, Huang L, Ling J-Y, Zheng L, Du Q-P (2016) Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut 218:1255–1261

    CAS  PubMed  Google Scholar 

  • Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores Technol 248:68–78

    CAS  Google Scholar 

  • Zhu X, Campanaro S, Treu L, Kougias PG, Angelidaki I (2019) Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Res 151:271–279

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support in a form of a Postdoctoral Fellowship from the College of Agriculture and Environmental Sciences research fund offered by the University of South Africa (UNISA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lerato Sekhohola-Dlamini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhohola-Dlamini, L., Tekere, M. Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing. Biodegradation 31, 1–21 (2020). https://doi.org/10.1007/s10532-019-09890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-019-09890-x

Keywords

Navigation