Skip to main content
Log in

The diversity and function of soil microbial communities exposed to different disturbances

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To improve understanding of the relationship between the diversity and function of the soil ecosystem, we investigated the effect of two different disturbances on soil bacterial communities—long-term exposure to the heavy metal mercury and transient exposure to the antibiotic tylosin. In die mercury-contaminated soil the diversity (Shannon index) was reduced as assessed from denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences from the soil community DNA and from colony morphology typing of the culturable bacterial population. However, analysis of the substrate utilization profiles did not reveal any differences in diversity. In the tylosin-treated soil, DGGE revealed a small difference in the diversity of 16S rDNA compared to the control soil, whereas analysis of the colony morphology typing or substrate utilization results did not reveal any differences in diversity. Soil function was also affected by mercury contamination. The lag time before soil respiration increased following addition of glucose or alfalfa substrate was longer in the mercury-contaminated soil than in the control soil. Moreover, it was markedly prolonged in mercury-contaminated soil subjected to heat treatment prior to substrate addition, thus indicating reduced resistance to a new disturbance in the mercury-contaminated soil as compared to the control soil. Tylosin treatment did not have any significant effect on any of the respiration parameters measured, either with or without prior heat treatment of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adas RM (1984) Diversity of microbial communities. In: KC Marshal (ed) Advances in Microbial Ecolog. vol 7, Plenum, New York, pp 1–47

    Google Scholar 

  2. Bakken LR (1985) Separation and purification of bacteria from soil. Appl Environ Microbiol 49:1482–1487

    PubMed  Google Scholar 

  3. Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271

    PubMed  CAS  Google Scholar 

  4. Barkay T, Turner RR, Rasmussen LD, Kelly CA, Rudd JWM (1998) Luminescence facilitated detection of bioavailable mercury in natural waters. In: RA LaRossa (ed) Methods in Molecular Biology, vol 102: Bioluminescence Methods and Protocols. Humana Press Inc, Totowa; NJ, pp 231–246

    Google Scholar 

  5. Begon M, Harper JL, Townsend CR (1996) Ecology, 3rd ed. Blackwell Science Ltd

  6. Bewick MWM (1978) Effect of tylosin and tylosin fermentation waste on microbial activity of soil. Soil Biol Biochem 10: 403–407

    Article  CAS  Google Scholar 

  7. Bååth E (1989) Effects of heavy metals in soil on microbial processes and population. Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  8. Bååth E, Diaz-Ravina M, Frostegård Å, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    PubMed  Google Scholar 

  9. Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functions of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  10. Doelman P, Haanstra L (1979) Effects of lead on the decomposition of organic matter. Soil Biol Biochem 11:481–485

    Article  CAS  Google Scholar 

  11. van Elsas JD, Smalla K (1995) Extraction of microbial community DNA from soils. In: A Akkermans, JD van Elsas, FJ de Bruin (eds), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, pp 1–11

  12. Elton CS (1958) The Reasons for Conservation. The Ecology of Invasions by Animals and Plants. Chapman & Hall, London, pp 143–153

    Google Scholar 

  13. Farrelly V, Rainey FA, Stackebrandt E (1995) Effect on genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    PubMed  CAS  Google Scholar 

  14. Finlay LB, Maberly SC, Cooper JI (1997) Microbial diversity and ecosystem function. Oikos 80:209–213

    Article  Google Scholar 

  15. Fowler J, Cohen L (1990) Practical Statistics for Field Biology. John Wiley & Sons Ltd, Chicester, UK

    Google Scholar 

  16. Fsegri A, Torsvik VL, Goksöyr J (1977) Bacterial and fungal activities in soil: Separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 29: 75–89

    Google Scholar 

  17. Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77:481–485

    CAS  Google Scholar 

  18. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  Google Scholar 

  19. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  20. Griffiths BS, Ritz K, Wheatley RE (1997) Relationship between functional diversity and genetic diversity in complex microbial communities. In: H Insam, A Rangger (eds) Microbial Communities, Functional versus Structural Approaches. Springer-Verlag, Berlin, pp 1–9

    Google Scholar 

  21. Griffiths BS, Ritz K, Bardgett RD, Cook, R, Christensen S, Ekelund F, Sorensen SJ, Bååth E, Bloem J, De Ruiter P, Dolfin J, Nicolardot B (2000) Stability of soil ecosystem processes following the experimental manipulation of soil microbial community diversity. Oikos 90:279–294

    Article  Google Scholar 

  22. Grime JP (1997) Biodiversity and ecosystem function: The debate deepens. Science 277:1260–1261

    Article  CAS  Google Scholar 

  23. Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468

    PubMed  CAS  Google Scholar 

  24. Haanstra L, Doelman P (1984) Glutamic acid decomposition as a sensitive measure of heavy metal pollution in soil. Soil Biol Biochem 16:595–600

    Article  CAS  Google Scholar 

  25. Haldeman DL, Amy PS (1993) Diversity within a colony morphotype: Implications for ecological research. Appl Environ Microbiol 59:933–935

    PubMed  Google Scholar 

  26. Hattori T, Mitsui H, Hattori R, Shikano S, Gorlach K, Kasahara Y, El-Beltagy A (1997) Analysis of the bacterial community according to colony development on solid medium. In: H Insam, A Rangger (eds) Microbial Communities, Functional versus Structural Approaches. Springer-Verlag, Berlin, pp 229–236

    Google Scholar 

  27. Heidmann T (1989) Startkarakterisering af arealer til systemforskning. IV. Resultater fra arealet ved Jyndevad. Report No. S 2021, Danish Institute of Plant and Soil Science.

  28. Hooper DU and Vitousek PM (1997) The effects of plant composition on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  29. Ingham ER, Coleman DC (1984) Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms. Microb Ecol 10:345–358

    Article  CAS  Google Scholar 

  30. Kriger AA, Turner RR (1995) Field analysis of mercury in water, sediment and soil using static headspace analysis. Water Air Soil Pollut 80:1295–1304

    Article  CAS  Google Scholar 

  31. Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374

    Article  Google Scholar 

  32. Magurran AE (1988) Ecological Diversity and its Measurement. University Press, Cambridge, UK

    Google Scholar 

  33. MacArthur R (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536

    Article  Google Scholar 

  34. McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165

    Article  CAS  Google Scholar 

  35. Mikola J, Setälä H (1998) Relating species diversity to ecosystem functioning: Mechanistic backgrounds and experimental approach with a decomposer food web. Oikos 83: 180–194

    Article  Google Scholar 

  36. Mochizuki M, Hattori T (1988) Kinetic study of growth throughout the lag phase and the exponential phase of Escherichia coli, FEMS Microbiol Ecol 45:291–296

    Article  Google Scholar 

  37. Muyzer, G, pa Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturant gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  38. Müller AK, Westergaard K, Christensen S, Sørensen SJ (2001) The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11–19

    PubMed  Google Scholar 

  39. Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1995) Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Phil Trans R Soc Lond 347:249–262

    Article  Google Scholar 

  40. Nordgren A, Bååth E, Söderström B (1988) Evaluation of soil respiration characteristics to assess heavy metal effects on soil microorganisms using glutamic acid as a substrate. Soil Biol Biochem 20:949–954

    Article  CAS  Google Scholar 

  41. Nübel U, Engelen B, Felske A, Snaidr J, Weishuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bact eriol 178:5636–5643

    Google Scholar 

  42. Ose EE, Tonkinson V (1985) Comparison of the antimycoplasma activity of two commercially available tylosin Premixes. Poultry Sei 64:287–293

    CAS  Google Scholar 

  43. Palumbo AV, Zhang C, Liu S, Scarborough SP, Pfiffner SM, Phelps TJ (1996) Influence of media on measurement of bacterial populations in the subsurface. Appl Biochem Biotech 57/58:905–914

    Article  CAS  Google Scholar 

  44. Prosser JI (1997) Microbial processes within the soil. In: Dirk van Elsas J, Trevors JT, Wellington EMH (eds) Modern Soil Microbiology. Marcel Dekker, New York, pp 183–213

    Google Scholar 

  45. Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a Mer-lux biosensor for estimating bioavailable mercury in soil and its utility in relating the response of soil microbial communities to bioavailable mercury. Soil Biol Biochem 32:639–646

    Article  CAS  Google Scholar 

  46. Rykiel EJ Jr (1985) Towards a definition of ecological disturbance. Aus J Ecol 10:361–365

    Article  Google Scholar 

  47. Salonius PO (1981) Metabolic capabilities of forest soil microbial populations with reduced species diversity. Soil Biol Biochem 13:1–10

    Article  Google Scholar 

  48. Shishido M, Chanway CP (1998) Storage effects on indigenious soil microbial communities and PGPR efficacy. Soil Biol Biochem 30:939–947

    Article  CAS  Google Scholar 

  49. Smalla K, Wachtendorf U, Heuer H, Liu W, Forney L (1998) Analysis of biolog GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    PubMed  CAS  Google Scholar 

  50. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: P Gerhardt, RGE Murry, WA Wood, NR Krieg (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC, pp 607–615

    Google Scholar 

  51. Smit E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microb Ecol 13:249–261

    Google Scholar 

  52. Tilman D (1996) Biodiversity: Population versus ecosystem stability. Ecology 77:350–263

    Article  Google Scholar 

  53. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  54. Tilman D, Knops J, Wedin D, Reich P, Ritche M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  55. Torsvik V, Goksyr J, Daee FL (1990) High diversity in DNA of soil Bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  56. Torsvik V, Daae FL, Sandaa R, Øvreås L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotech 64:53–62

    Article  CAS  Google Scholar 

  57. Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28: 1549–1554

    Article  CAS  Google Scholar 

  58. Wardle DA, Zackrisson O, Hörnberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277: 1296–1299

    Article  CAS  Google Scholar 

  59. Watve MG, Gangal RM (1996) Problems in measuring bacterial diversity and a possible solution. Appl Environ Microbiol 62:4299–4301

    PubMed  CAS  Google Scholar 

  60. Westergaard K, Müller AK, Christensen S, Bloem J, Sorensen SJ. (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem, 33:2061–2071

    Article  CAS  Google Scholar 

  61. Winding A, Hendriksen NB (1997) Biolog substrate utilization assay for metabolic fingerprints of soil bacteria: Incubation effects. In: H Insam, A Rangger (eds) Microbial Communities, Functional versus Structural Approaches. Springer-Verlag, Berlin, pp 195–205

    Google Scholar 

  62. von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microb Rev 21: 213–229

    Article  Google Scholar 

  63. Øvreås L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Sørensen.

Additional information

Online publication: 30 April 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, A.K., Westergaard, K., Christensen, S. et al. The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44, 49–58 (2002). https://doi.org/10.1007/s00248-001-0042-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-001-0042-8

Keywords

Navigation