Skip to main content

Advertisement

Log in

Biosynthesis of d-lactic acid from lignocellulosic biomass

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

d-lactic acid is a versatile and important industrial chemical that can be applied in the synthesis of thermal-resistant poly-lactic acid. Biosynthesis of d-lactic acid can be achieved by a variety of microorganisms, including lactic acid bacteria, yeast, and fungi; however, the final product yield, optical purity, and the utilization of both glucose and xylose are restricted. Consequently, engineered microbial systems are essential to attain high titer, productivity, and complete utilization of sugars. Herein, we critically evaluate the promising wild-type microorganisms, as well as genetically modified microorganisms to produce enantiomerically pure d-lactic acid, particularly from renewable lignocellulosic biomass. In addition, innovative bioreactor operation, metabolic flux analysis, and recent genetic engineering methods for targeted microbial d-lactic acid synthesis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  PubMed  CAS  Google Scholar 

  • Baek SH, Kwon EY, Kim YH, Hahn JS (2016) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:2737–2748

    Article  PubMed  CAS  Google Scholar 

  • Bai ZZ, Gao Z, Sun JF, Wu B, He BF (2016) D-lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol 207:346–352

    Article  PubMed  CAS  Google Scholar 

  • Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102:1831–1836

    Article  PubMed  CAS  Google Scholar 

  • Datta R, Tsai S, Bonsignore P, Moon S, Frank J (1995) Technological and economic-potential of poly(lactic Acid) and lactic-acid derivatives. FEMS Microbiol Rev 16:221–231

    Article  CAS  Google Scholar 

  • Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415–1442

    Article  CAS  Google Scholar 

  • Eş I, Mousavi Khaneghah A, Barba FJ, Saraiva JA, Sant’Ana AS, Hashemi SMB (2018) Recent advancements in lactic acid production—a review. Food Res Int 107:763–770

    Article  PubMed  CAS  Google Scholar 

  • Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  • Ghaffar T, Ghaffar M, Irshad Z, Anwar T, Aqil Z, Zulifqar A, Tariq M, Kamran N, Ehsan S, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res 7:222–229

    CAS  Google Scholar 

  • Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A (2015) Production of D-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharificatoin and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour Technol 187:167–172

    Article  PubMed  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  PubMed  CAS  Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual—Rna-guided DNA endonuclease in adaptive bacterial immunity. Science 33:816–821

    Article  CAS  Google Scholar 

  • Joshi DS, Jain MS, Khire J, Gokhale D (2010) Strain improvement of Lactobaillus lactis for D-lactic acid production. Biotechnol Lett 32:517–520

    Article  PubMed  CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. A Van Leeuw J Microb 49:209–224

    Article  CAS  Google Scholar 

  • Leja K, Myszka K, Czaczyk K (2011) Genome shuffling: a method to improve biotechnological processes. BioTechnologia 92:345–351

    Article  CAS  Google Scholar 

  • Liaud N, Rosso MN, Fabre N, Grapart S, Herpoël-Gimbert I, Sigoillot JC, Raouche S, Levasseur A (2015) L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microb Cell Fact 14:66–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Liao W, Chen S (2008) Co-production of lactic acid and chitin using a pelletized filamentous fungus Rizopus oryzae cultured on cull potatoes and glucose. J Appl Microbiol 105:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Lu HY, Zhao X, Wang YZ, Ding XR, Wang JH, Garza E, Manow R, Iverson A, Zhou SD (2016) Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. BMC Biol 16:19–29

    Article  CAS  Google Scholar 

  • Maas RHW, Bakker RR, Eggink G, Weusthuis RA (2006) Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiol Biotechnol 72:861–868

    Article  PubMed  CAS  Google Scholar 

  • Meussen BJ, de Graaff LH, Sanders JP, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94:875–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mimitsuka T, Sawai K, Kobayashi K, Tsukada T, Tekeuchi N, Yamada K, Ogino H, Yonehara T (2015) Production of D-lactic acid in continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in d-lactic acid carbon yield. J Biosci Bioeng 119:65–71

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CM, Kim JS, Song JK, Choi GJ, Choi YH, Jang KS, Kim JC (2012) D-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp torquens. Biotechnol Lett 34:2235–2240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen CM, Kim J, Nguyen Thanh Ngoc, Kim SK, Choi GJ, Choi YH, Jang KS, Kim J (2013) Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour Technol 146:35–43

    Article  PubMed  CAS  Google Scholar 

  • Ohara H, Owaki M, Sonomoto K (2007) Calculation of metabolic flow of xylose in Lactococcus lactis. BioSci Bioeng 1:92–94

    Article  CAS  Google Scholar 

  • Okano K, Kimura S, Narita J, Fukuda H, Kondo A (2007) Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Appl Microbiol Biotechnol 75:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009a) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467

    Article  PubMed  CAS  Google Scholar 

  • Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2009b) Homo-D-Lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate Pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:5175–5178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okano K, Yoshida S, Yamada R, Tanaka T, Ogino Fukuda H, Kondo A (2009c) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) D-lactic acid production from cellooligosaccharides and β-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650

    Article  PubMed  CAS  Google Scholar 

  • Olofsson K, Bertilsson M, Lidé G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacheco A, Talaia G, Sá-Pessoa J, Bessa D, Gonçalves MJ, Moreira R, Queirós O (2012) Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Res 12(3):375–381

    Article  PubMed  CAS  Google Scholar 

  • Park EY, Kosakai Y, Okabe M (1998) Efficient production of L-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol Progr 14:699–704

    Article  CAS  Google Scholar 

  • Park EY, Anh PN, Okuda N (2004) Bioconversion of waste office paper to L-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresour Technol 93:77–83

    Article  PubMed  CAS  Google Scholar 

  • Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101:7435–7443

    Article  PubMed  CAS  Google Scholar 

  • Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) D-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109

    Article  CAS  Google Scholar 

  • Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T (2004) Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl Microbiol Biotechnol 66:160–165

    Article  PubMed  CAS  Google Scholar 

  • Taskila S, Ojamo H (2013) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. In: Kongo M (ed) Lactic acid bacteria: R&D for food, health and livestock purposes. https://www.intechopen.com/books/lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes/the-current-status-and-future-expectations-in-industrial-production-of-lactic-acid-by-lactic-acid-ba. Accessed 24 Jan 2018

  • Tay A, Yang ST (2002) Production of L-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H (2009) Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 82:883–890

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Ikada Y (1999) Physical properties of polylactides. Curr Trends Polym Sci 4:27

    CAS  Google Scholar 

  • Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22:245–264

    CAS  Google Scholar 

  • Wang L, Zhao B, Liu B, Yu B, Ma C, Su F, Hua D, Li Q, Ma Y, Xu P (2010) Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 101:7908–7915

    Article  PubMed  CAS  Google Scholar 

  • Xu TT, Bai ZZ, Wang LJ, He BF (2010) Breeding of D-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Appl Biochem Biotechnol 160:312–321

    Google Scholar 

  • Yadav AK, Chaudhari AB, Kothari RM (2011) Bioconversion of renewable resources into lactic acid: an industrial view. Crit Rev Biotechnol 31:1–19

    Article  PubMed  CAS  Google Scholar 

  • Zaunmueller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    Article  CAS  Google Scholar 

  • Zhang Y, Vadlani PV (2013) D-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioproc Biosyst Eng 36:1897–1904

    Article  CAS  Google Scholar 

  • Zhang YX, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng 119:694–699

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Kumar A, Hardwidge PR, Tanaka T, Kondo A, Vadlani PV (2016a) D-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum. Biotechnol Prog 32:271–278

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A (2016b) Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 100:279–288

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Zeng F, Hohn K, Vadlani PV (2016c) Metabolic flux analysis of carbon balance in Lactobacillus strain. Biotehcnol Prog 32:1397–1403

    Article  CAS  Google Scholar 

  • Zhao JF, Xu LY, Wang YZ, Zhao X, Wang JH, Garza E, Manow R, Zhou SD (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao T, Liu D, Ren H, Shi X, Zhao N, Chen Y, Ying H (2014) D-Lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate. J Microbiol Biotechnol 24:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Zheng HJ, Gong JX, Chen T, Chen X, Zhao XM (2010) Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of D-lactic acid by genome shuffling. Appl Microbiol Biotechnol 85:1541–1549

    Article  PubMed  CAS  Google Scholar 

  • Zhou SD, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure D-lactic acid in mineral medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Consortium for Plant Biotechnology Research (CPBR), the Gary and Betty Lortscher Endowment, Department of Grain Science and Industry at Kansas State University, and Japan Society of Promotion of Science (17F17404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yoshida, M. & Vadlani, P.V. Biosynthesis of d-lactic acid from lignocellulosic biomass. Biotechnol Lett 40, 1167–1179 (2018). https://doi.org/10.1007/s10529-018-2588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2588-2

Keywords

Navigation