Skip to main content
Log in

Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g−1. Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L−1 of D-lactic acid was produced from 37.5 g L−1 glucose and 19.7 g L−1 xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L−1 D-lactic acid with an overall yield of 0.77 g g−1. All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902. doi:10.1016/j.biotechadv.213.04.002

    Article  PubMed  CAS  Google Scholar 

  • Ahmed FE (2006) Genetically modified probiotics. In: Goktepe I, Juneja VK, Ahmedna M (eds) Probiotics in food safety and human health. CRC Press, FL, pp. 229–250

    Google Scholar 

  • Batal AB, Douglas MW, Engram AE, Parsons CM (2000) Protein dispersibility index as an indicator of adequately processed soybean meal. Poult Sci 79:1592–1596. doi:10.1093/ps/79.11.1592

    Article  PubMed  CAS  Google Scholar 

  • Bustos G, Moldes AB, Cruz JM, Domínguez JM (2005) Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol Prog 21:793–798. doi:10.1021/bp049603v

    Article  PubMed  CAS  Google Scholar 

  • Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475. doi:10.1080/00401706.1960.10489912

    Article  Google Scholar 

  • Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131. doi:10.1046/j.1365-2958.1999.01152.x

    Article  PubMed  Google Scholar 

  • Fons M, Hégé T, Ladiré M, Raibaud P, Ducluzeau R, Maguin E (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37:199–203. doi:10.1006/plas.1997.1290

    Article  PubMed  CAS  Google Scholar 

  • Guragain YN, Wilson J, Staggenborg S, McKinney L, Wang D, Vadlani PV (2013) Evaluation of pelleting as a pre-processing step for effective biomass deconstruction and fermentation. Biochem Eng J 77:198–207. doi:10.1016/j.bej.2013.05.014

    Article  CAS  Google Scholar 

  • Guo W, He R, Ma L, Jia W, Li D, Chen S (2014) Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 98:6641–6650. doi:10.1007/s00253-014-5703-x

    Article  PubMed  CAS  Google Scholar 

  • Helanto M, Kiviharju K, Leisola M, Nyyssoelae A (2007) Metabolic engineering of Lactobacillus plantarum for production of L-ribulose. Appl Environ Microbiol 73:7083–7091. doi:10.1128/AEM.01180-07

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishida N, Suzuki T, Tkuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H (2006) D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosic Bioeng 101:172–177. doi:10.1263/jbb.101.172

    Article  CAS  Google Scholar 

  • Kwon S, Lee PC, Lee EG, Chang YK, Chang N (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzym Microb Technol 26:209–215. doi:10.1016/S0141-0229(99)00134-9

    Article  CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. A Van Leeuw J Microb 49:209–224. doi:10.1007/BF00399499

    Article  CAS  Google Scholar 

  • Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46:233–244. doi:10.1111/j.1574-6968.1987.tb02463.x

    Article  CAS  Google Scholar 

  • Li Z, Ding S, Li Z, Tan T (2006) L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnol J 1:1453–1458. doi:10.1002/biot.200600099

    Article  PubMed  CAS  Google Scholar 

  • Lazazzera BA, Grossman AD (1997) A regulatory switch involving a Clp ATPase. BioEssays 19:455–458. doi:10.1002/bies.950190604

    Article  PubMed  CAS  Google Scholar 

  • Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma P, Pouwels PH (1997) Regulation of expression of the Lactobacillus pentosus xylAB operon. J Bacteriol 179:5391–5397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu GQ, Wang XL (2007) Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl Microbiol Biotechnol 74:78–83. doi:10.1007/s00253-006-0661-6

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Ruan R, Chen P, Liu Z, Pan X, Lin X, Liu Y, Mok C, Yang T (2004) Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Trans ASAE 47:821–825

    Article  CAS  Google Scholar 

  • Li C, Tao F, Ni J, Wang Y, Yao F, Xu P (2015) Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy. Sci Rep. doi:10.1038/srep0977

    Google Scholar 

  • Maiti B, Rathore A, Srivastava S, Shekhawat M, Srivastava P (2011) Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm. Appl Microbiol Biotechnol 90:385–395. doi:10.1007/s00253-011-3158-x

    Article  PubMed  CAS  Google Scholar 

  • McCracken A, Turner MS, Giffard P, Hafner LM, Timms P (2000) Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173:383–389. doi:10.1007/s002030000159

    Article  PubMed  CAS  Google Scholar 

  • Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72:269–275. doi:10.1128/AEM.72.1.269-275.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2009a) Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:5175–5178. doi:10.1128/AEM.00573-09

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009b) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861. doi:10.1128/AEM.01692-09

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009c) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467. doi:10.1128/AEM.01514-08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423. doi:10.1007/s00253-009-2280-5

    Article  PubMed  CAS  Google Scholar 

  • Piard JC, Desmazeaud M (1991) Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Lait 71(5):525–541. doi:10.1051/lait:1991541

    Article  CAS  Google Scholar 

  • Pollack MA, Lindner M (1942) Glutamine and glutamic acid as growth factors for lactic acid bacteria. J Biol Chem 143:655–661

    CAS  Google Scholar 

  • Posno M, Leer RJ, van Luijk N, van Giezen MJF, Heuvelmans PTHM, Lokman BC, Pouwels PH (1991a) Incompatibility of Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828

    PubMed  CAS  PubMed Central  Google Scholar 

  • Posno M, Heuvelmans PTH, van Giezen MJF, Lokman BC (1991b) Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes. Appl Environ Microbiol 57:2764–2766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rixon JE, Warner PJ (2003) Introduction, background, relevant genetic techniques and terms. In: BJB W, Warner PJ (eds) Genetics of lactic acid bacteria. Plenum Publisher, New York, pp. pp 1–pp24

    Google Scholar 

  • Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, Van de guchte M (2006) Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol 72:5143–5149. doi:10.1128/AEM.00482-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Serror P, Sasaki T, Ehrlich S, Maguin E (2002) Electrotransformation of Lactobacillus delbrueckii subsp bulgaricus and L. delbrueckii subsp lactis with various plasmids. Appl Environ Microbiol 68:46–52. doi:10.1128/AEM.68.1.46-52.2002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Zhao B, Li F, Xu K, Ma C, Tao F, Li Q, Xu P (2011) Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017. doi:10.1128/genomeA.00465-14

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A (2011) Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 92:67–76. doi:10.1007/s00253-011-3356-6

    Article  PubMed  CAS  Google Scholar 

  • Yadav AK, Chaudhari AB, Kothari RM (2011) Bioconversion of renewable resources into lactic acid: an industrial view. Crit Rev Biotechnol 31:1–19. doi:10.3109/07388550903420970

    Article  PubMed  CAS  Google Scholar 

  • Yanez R, Moldes AB, Alonso JL, Parajo JC (2003) Production of D-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164. doi:10.1023/A:1024534106483

    Article  PubMed  CAS  Google Scholar 

  • Zambare VP, Christopher LP (2012) Optimization of enzymatic hydrolysis of corn stover for improved ethanol production. Energy Explor Exploit 30:193–205. doi:10.1186/1754-6834-6-171

    Article  CAS  Google Scholar 

  • Zhang Y, Kumar A, Vadlani PV, Narayanan S (2013) Production of nitrogen-based platform chemical: cyanophycin biosynthesis using recombinant Escherichia coli and renewable media substitutes. J Chem Tech Biot 88:1321–1327. doi:10.1002/jctb.3978

    Article  CAS  Google Scholar 

  • Zhang Y, Vadlani PV (2013) D-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 36:1897–1904. doi:10.1007/s00449-013-0965-8

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. BioSci Bioeng 119:694–699. doi:10.1016/j.jbiosc.2014.10.027

    Article  CAS  Google Scholar 

  • Zhu Y, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137:721–738. doi:10.1007/s12010-007-9092-9

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Serror for donating the pLEM415 plasmid. The authors also appreciate Novozymes Inc. for donating enzymes. This work was supported by the Consortium for Plant Biotechnology Research (CPBR) and the Gary and Betty Lortscher Endowment. This is contribution no. 15-350-J from the Kansas Agricultural Experiment Station.

Ethical statement

No human subject or animal research was involved in this study. Further, no endangered or protected species were used in the study.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Zhang.

Electronic supplementary material

ESM 1

(PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Vadlani, P.V., Kumar, A. et al. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum . Appl Microbiol Biotechnol 100, 279–288 (2016). https://doi.org/10.1007/s00253-015-7016-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7016-0

Keywords

Navigation