Skip to main content
Log in

CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, a variety of genetic tools have been developed and applied to various filamentous fungi, which are widely applied in agriculture and the food industry. However, the low efficiency of gene targeting has for many years hampered studies on functional genomics in this important group of microorganisms. The emergence of CRISPR/Cas9 genome-editing technology has sparked a revolution in genetic research due to its high efficiency, versatility, and easy operation and opened the door for the discovery and exploitation of many new natural products. Although the application of the CRISPR/Cas9 system in filamentous fungi is still in its infancy compared to its common use in E. coli, yeasts, and mammals, the deep development of this system will certainly drive the exploitation of fungal diversity. In this review, we summarize the research progress on CRISPR/Cas9 systems in filamentous fungi and finally highlight further prospects in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 110:E99–E107

    Article  CAS  PubMed  Google Scholar 

  • Arazoe T, Ogawa T, Miyoshi K, Yamato T, Ohsato S, Sakuma T, Kuwata S (2015) Tailor-made talen system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Auer TO, Duroure K, Concordet JP, Del BF (2014) CRISPR/Cas9-mediated conversion of Egfp-into Gal4-transgenic lines in zebrafish. Nat Protoc 9:2823–2840

    Article  CAS  PubMed  Google Scholar 

  • Chung ME, Yeh I, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC (2017) Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng 114:172–183

    Article  CAS  PubMed  Google Scholar 

  • Chylinski K, Le RA, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N (2013) Multiplex genome engineering using CRISPR-Cas systems. Science 339:197–217

    Article  Google Scholar 

  • Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  PubMed  Google Scholar 

  • Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus Tn484-m1. Bioresour Technol 98:3329–3337

    Article  CAS  PubMed  Google Scholar 

  • Dyal SD, Bouzidi L, Narine SS (2005) Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of ph, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Res Int 38:815–829

    Article  CAS  Google Scholar 

  • Estrela R, Cate JHD (2016) Energy biotechnology in the CRISPR-Cas9 era. Curr Opin Biotechnol 38:79–84

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Čertik M, Papanikolaou S, Aggelis G, Komaitis M, Galiotou-Panayotou M (2008) γ-Linolenic acid production by Cunninghamella echinulata, growing on complex organic nitrogen sources. Bioresour Technol 99:5986–5990

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Xia L (2015) Cellulase production by recombinant Trichoderma reesei, and its application in enzymatic hydrolysis of agricultural residues. Fuel 143:211–216

    Article  CAS  Google Scholar 

  • Fang YF, Tyler BM (2015) Efficient disruption and replacement of an effector gene in the Oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127–139

    Article  PubMed  Google Scholar 

  • Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G, Pandey A (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem Eng J 15:107–115

    Article  CAS  Google Scholar 

  • Fu YQ, Yin LF, Zhu HY, Jiang R (2016) High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy. Bioresour Technol 218:410–417

    Article  CAS  PubMed  Google Scholar 

  • Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 25:709–712

    Google Scholar 

  • Gao YB, Zhao YD (2015) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  Google Scholar 

  • Gao YB, Zhang Y, Zhang D, Dai XH, Estelle M, Zhao YD (2015) Auxin binding protein (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 112:2275–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR-Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris LJ, Margaret B, Anne J, Danielle S, Thérèse O (2016) Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol 120:111–123

    Article  CAS  PubMed  Google Scholar 

  • Bachu R, Bergareche I, Chasin LA (2015) CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining. Biotechnol Bioeng 112:2154–2162

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Reng LJ, Nie ZK, Huang H, Ouyang PK (2014) Fungal arachidonic acid-rich oil: research, development and industrialization. Crit Rev Biotechnol 34:197–214

    Article  CAS  PubMed  Google Scholar 

  • Jia HG, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-Rna-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642

    Article  CAS  PubMed  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    Article  PubMed  Google Scholar 

  • Kuivanen J, Wang YJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Fact 15:210–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683

    Article  CAS  PubMed  Google Scholar 

  • Kao PH, Ng IS (2017) CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.04.111

  • Lecellier A, Gaydou V, Mounier J, Hermet A, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD (2015) Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Food Microbiol 45:126–134

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Chung J, Kim HM, Kim D, Kim H (2016) Designed nucleases for targeted genome editing. Plant Biotechnol J 14:448–462

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Chen L, Jiang YP, Zhou ZH, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10:1. https://doi.org/10.1186/s13068-016-0693-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Koonin EV (2013) The basic building blocks and evolution of CRISPR Cas systems. Biochem Soc Trans 41:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Oost JVD, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantzouridou FT, Naziri E (2017) Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions. Appl Microbiol Biotechnol 101:1845–1856

    Article  CAS  PubMed  Google Scholar 

  • Marumo S, Katayama M, Komori E, Ozaki Y, Natsume M, Kondo S (2014) Microbial production of abscisic acid by Botrytis cinerea. Agric Biol Chem 46:1967–1968

    Google Scholar 

  • Mashimo T (2014) Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Develop Growth Differ 56:46–52

    Article  CAS  Google Scholar 

  • Matsu-Ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4. https://doi.org/10.1186/s40694-015-0015-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra NC, Tatum EL (1973) Non-mendelian inheritance of DNA-induced inositol independence in Neurospora. Proc Natl Acad Sci U S A 70:3875–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo X, Kang Y, Yan J, Liu J, Bi Y, Zhen K (2002) Production of linolenic acid by Mortierella isabellina grown on octadecanol. Curr Microbiol 44:141–144

    Article  Google Scholar 

  • Nanou K, Roukas T (2016) Waste cooking oil: a new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresour Technol 203:198–203

    Article  CAS  PubMed  Google Scholar 

  • Ng IS, Hung YH, Kao PH, Zhou Y, Zhang X (2016) CRISPR/Cas9 nuclease cleavage enables marker-free genome editing in Escherichia coli: a sequential study. J Taiwan Inst Chem Eng 68:31–39

    Article  CAS  Google Scholar 

  • Nielsen ML, Isbrandt T, Rasmussen KB, Thrane U, Hoof JB, Larsen TO, Mortensen UH (2017) Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR/Cas9. PLoS One 12:e0169712

    Article  PubMed  PubMed Central  Google Scholar 

  • Nissim L, Perli SD, Fridkin A, Perezpinera P, Lu TK (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54:698–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR/Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygard Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Xiao H, Zou G, Zhou Z, Zhong JJ (2017) CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem 56:57–61

    Article  CAS  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino A, Scott DA, Lnoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan OW, Cate JH (2014) Multiplex engineering of industrial yeast genomes using CRISPRm. Methods Enzymol 546:473–489

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Schweizer G, Reissmann S, Reissmannet S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genet Biol 89:3–9

    Article  CAS  PubMed  Google Scholar 

  • Shi TQ, Peng H, Zeng SY, Ji RY, Shi K, Huang H, Ji XJ (2017) Microbial production of plant hormones: opportunities and challenges. Bioengineered 8:124–128

    Article  CAS  PubMed  Google Scholar 

  • Tang WJ, Pan A, Lu HZ, Xia JY, Zhuang YP, Zhang SL, Chu J, Noorman H (2015) Improvement of glucoamylase production using axial impellers with low power consumption and homogeneous mass transfer. Biochem Eng J 99:167–176

    Article  CAS  Google Scholar 

  • Thrane U, Anderson B, Frisvad JC, Smedsgaard J (2007) The exo-metabolome in filamentous fungi. Top Curr Genet 18:235–252

    Article  CAS  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3-Genes Genom Genet 3:2233–2238

    CAS  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  • Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA (2016) Functional reconstitution of a fungal natural product gene cluster by advanced genome editing. ACS Synth Biol 6:62–68

    Article  PubMed  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    Article  CAS  PubMed  Google Scholar 

  • Weyda I, Yang L, Vang J, Ahring BK, Lübeck M, Lübeck PS (2017) A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR/Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods 135:26–34

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Feng G (2015) Progress of application and off-target effects of CRISPR/Cas9. Heredi 37:1003–1010

    Google Scholar 

  • Xu Q, Li S, Huang H, Wen J (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhang X, Wu Z, Wang Z (2015) Accumulation of yellow monascus, pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 99:1173–1180

    Article  Google Scholar 

  • Yang MQ, Athey BD, Arabnia HR, Sung AH, Liu Q, Yang JY, Mao JH, Deng YP (2009) High-throughput next-generation sequencing technologies foster new cutting-edge computing techniques in bioinformatics. BMC Genomics 10:1–3

    Article  CAS  Google Scholar 

  • Yin CM, Fan XZ, Shi DF, Gao H (2017) CRISPR/Cas genome editing technology and its application in fungi. Biotechnol Bull 33:58–65

    Google Scholar 

  • Yu J, Cleveland TE, Nierman WC, Bennett JW (2005) Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol 22:194–202

    Article  PubMed  Google Scholar 

  • Zhang C, Meng X, Wei X, Lu L (2015) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57

    Article  PubMed  Google Scholar 

  • Zhang Y, Luan X, Zhang H, Garre V, Song Y, Ratledge C (2017) Improved γ-linolenic acid production in Mucor circinelloides by homologous overexpressing of delta-12 and delta-6 desaturases. Microb Cell Factories 16:113. https://doi.org/10.1186/s12934-017-0723-8

    Article  Google Scholar 

  • Zhou PP, Meng J, Bao J (2017) Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresour Technol 224:563–572

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 21376002, 21476111 and 21776131), the Jiangsu Province Natural Science Foundation of China (No. BK20131405), the Program for Innovative Research Team in University of Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, TQ., Liu, GN., Ji, RY. et al. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101, 7435–7443 (2017). https://doi.org/10.1007/s00253-017-8497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8497-9

Keywords

Navigation