Skip to main content
Log in

d-lactic acid production from cellooligosaccharides and β-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to achieve direct fermentation of an optically pure d-lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (∆ldhL1) bacterial strain. CelA expression and its degradation of β-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ∆ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D-lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D-lactic acid fermentation from barley β-glucan was carried out with the addition of Aspergillus aculeatus β-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D-lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from β-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi T, Ito J, Kawata K, Kaya M, Ishida H, Sahara H, Hata Y, Ogino C, Fukuda H, Kondo A (2008) Construction of an Aspergillus oryzae cell-surface display system using a putative GPI-anchored protein. Appl Microbiol Biotechnol 81:711–719

    Article  CAS  Google Scholar 

  • Adsul M, Khire J, Bastawde K, Gokhale D (2007) Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl Environ Microbiol 73:5055–5057

    Article  CAS  Google Scholar 

  • Bates EEM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl Environ Microbiol 55:2095–2097

    CAS  Google Scholar 

  • Béguin P, Cornet P, Aubert JP (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J Bacteriol 162:102–105

    Google Scholar 

  • Boot HJ, Kolen CPAM, Andreadaki FJ, Leer RJ, Pouwels PH (1996) The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA. J Bacteriol 178:5388–5394

    CAS  Google Scholar 

  • Cho JS, Choi YJ, Chung DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic Lactobacilli. Curr Microbiol 40:257–263

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  • Goffin P, Muscariello L, Lorquet F, Stukkens A, Prozzi D, Sacco M, Kleerebezem M, Hols P (2006) Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth. Appl Environ Microbiol 72:7933–7940

    Article  CAS  Google Scholar 

  • Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly (lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  • Kawaguchi T, Enoki T, Tsurumaki S, Sumitani J, Ueda M, Ooi T, Arai M (1996) Cloning and sequencing of the cDNA encoding β-glucosidase 1 from Aspergillus aculeatus. Gene 173:287–288

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

    Article  CAS  Google Scholar 

  • Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P (2004) Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 186:3749–3759

    Article  CAS  Google Scholar 

  • McCracken A, Turner MS, Giffard P, Hafner LM, Timms P (2000) Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173:383–389

    Article  CAS  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    CAS  Google Scholar 

  • Murphy MG, O’Connor L, Walsh D, Condon S (1985) Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch Microbiol 141:75–79

    Article  CAS  Google Scholar 

  • Narita J, Ishida S, Okano K, Kimura S, Fukuda H, Kondo A (2006a) Improvement of protein production in lactic acid bacteria using 5′-untranslated leader sequence of slpA from Lactobacillus acidophilus. Appl Microbiol Biotechnol 73:366–373

    Article  CAS  Google Scholar 

  • Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A (2006b) Display of α-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72:269–275

    Article  CAS  Google Scholar 

  • Okano K, Kimura S, Narita J, Fukuda H, Kondo A (2007) Improvement in lactic acid production from starch using α-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Appl Microbiol Biotechnol 75:1007–1013

    Article  CAS  Google Scholar 

  • Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009) Efficient production of optically pure D-lactic acid from raw corn starch using genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum. Appl Environ Microbiol 75:462–467

    Article  CAS  Google Scholar 

  • Petre J, Longin R, Millet J (1981) Purification and properties of an endo-β-1, 4-glucanase from Clostridium thermocellum. Biochimie 63:629–639

    Article  CAS  Google Scholar 

  • Rossi F, Rudella A, Marzotto M, Dellaglio F (2001) Vector-free cloning of a bacterial endo-1, 4-β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Van Leeuwenhoek 80:139–147

    Article  CAS  Google Scholar 

  • Sakamoto R, Arai M, Murao S (1985) Enzymic properties of three β-glucosidases from Aspergillus aculeatus No. F-50. Agric Biol Chem 49:1283–1290

    CAS  Google Scholar 

  • Satoh E, Ito Y, Sasaki Y, Sasaki T (1997) Application of the extracellular α-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains. Appl Environ Microbiol 63:4593–4596

    CAS  Google Scholar 

  • Scheirlinck T, Mahillon J, Joos H, Dhaese P, Michiels F (1989) Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137

    CAS  Google Scholar 

  • Serror P, Sasaki T, Ehrlich SD, Maguin E (2002) Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with various plasmids. Appl Environ Microbiol 68:46–52

    Article  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • Yáñez R, Moldes AB, Alonso JL, Parajó JC (2003) Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164

    Article  Google Scholar 

  • Yoon HH (1997) Simultaneous saccharification and fermentation of cellulose for lactic acid production. Biotechnol. Bioprocess Eng 2:101–104

    Article  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 22:452–481

    Google Scholar 

Download references

Acknowledgments

We are grateful to Meiji Dairies Corporation for supplying the pSECE1 plasmid. This work was supported in part by a Grant-in-Aid for JSPS Fellows (20000860), Tokyo and Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okano, K., Zhang, Q., Yoshida, S. et al. d-lactic acid production from cellooligosaccharides and β-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85, 643–650 (2010). https://doi.org/10.1007/s00253-009-2111-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2111-8

Keyword

Navigation