Skip to main content
Log in

Microarray: gateway to unravel the mystery of abiotic stresses in plants

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Environmental factors, such as drought, salinity, extreme temperature, ozone poisoning, metal toxicity etc., significantly affect crops. To study these factors and to design a possible remedy, biological experimental data concerning these crops requires the quantification of gene expression and comparative analyses at high throughput level. Development of microarrays is the platform to study the differential expression profiling of the targeted genes. This technology can be applied to gene expression studies, ranging from individual genes to whole genome level. It is now possible to perform the quantification of the differential expression of genes on a glass slide in a single experiment. This review documents recently published reports on the use of microarrays for the identification of genes in different plant species playing their role in different cellular networks under abiotic stresses. The regulation pattern of differentially-expressed genes, individually or in group form, may help us to study different pathways and functions at the cellular and molecular level. These studies can provide us with a lot of useful information to unravel the mystery of abiotic stresses in important crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aoki K, Yano K, Suzuki A et al (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genom 11:210

    Article  Google Scholar 

  • Bita CE, Zenoni S, Vriezen WH et al (2011) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genom 12:384

    Article  CAS  Google Scholar 

  • Brandl J, Anderson MR (2015) Current state of genome-scale modeling in filamentous fungi. Biotechnol Lett 37:1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai G-L, Wang X-J, Liu D et al (2010) Isolation and expression analysis of a TaOZR gene induced by stripe rust fungus in wheat. Sci Agric Sin 12:001

    Google Scholar 

  • Cai H, Tian S, Liu C et al (2011) Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene 485:146–152

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Lu Y, Xie W et al (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    Article  CAS  PubMed  Google Scholar 

  • Chang-Kug K, Lim H-M, Na J-K et al (2014) A multistep screening method to identify genes using evolutionary transcriptome of plants. Evol Bioinform Online 10:69

    Google Scholar 

  • Chen Y, Zong J, Tan Z et al (2015) Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening. Plant Physiol Biochem 89:44–52

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Lefèvre I, Lutts S et al (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594

    Article  PubMed  Google Scholar 

  • Coram TE, Huang X, Zhan G et al (2010) Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Funct Integr Genom 10:383–392

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea RM, Triassi A, Casas MI et al (2015) Identification of genes involved in the drought adaptation and recovery in Portulaca oleracea by differential display. Plant Physiol Biochem 90:38–49

    Article  PubMed  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genom 11:2

    Article  CAS  Google Scholar 

  • Duan J, Tian X, Jia Z (2013) Proteomics uncovers a role for enhanced ultraviolet-B radiation on wheat leaves. Amer J Plant Sci 4:1227–1232

    Article  Google Scholar 

  • Frei M, Tanaka JP, Chen CP et al (2010) Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. J Exp Bot 61:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Zhang J, Li H et al (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61:3563–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Liu Y, Zong X et al (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Wei J et al (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65:249–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacham Y, Koussevitzky S, Kirma M et al (2014) Glutathione application affects the transcript profile of genes in Arabidopsis seedling. J Plant Physiol 171:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Li AX, Li F et al (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 54:49–58

    Article  CAS  PubMed  Google Scholar 

  • Hasthanasombut S, Paisarnwipatpong N, Triwitayakorn K et al (2011) Expression of OsBADH1 gene in Indica rice (Oryza sativa L.) in correlation with salt, plasmolysis, temperature and light stresses. Plant Omics 4:75–81

    Google Scholar 

  • Hossain Z, Khatoon A, Komatsu S (2013) Soybean proteomics for unraveling abiotic stress response mechanism. J Proteom Res 12:4670–4684

    Article  CAS  Google Scholar 

  • Huertas R, Rubio L, Cagnac O et al (2013) The K +/H + antiporter LeNHX2 increases salt tolerance by improving K + homeostasis in transgenic tomato. Plant Cell Environ 36:2135–2149

    Article  CAS  PubMed  Google Scholar 

  • Humbert S, Subedi S, Cohn J et al (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genom 14:3

    Article  CAS  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Janská A, Maršík P, Zelenková S et al (2010) Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  Google Scholar 

  • Jia-Shing C, Lin SC, Chen CY et al (2014) Development of microarray for two rice subspecies: characterization and validation of gene expression in rice. BMC Res Note 7:15

    Article  Google Scholar 

  • Karakach TK, Flight RM, Douglas SE et al (2010) An introduction to DNA microarrays for gene expression analysis. Chemom Intel Lab Sys 104:28–52

    Article  CAS  Google Scholar 

  • Kong X, Li D (2011) Hydrogen peroxide is not involved in HrpN from Erwinia amylovora-induced hypersensitive cell death in maize leaves. Plant Cell Rep 30:1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Sun L, Zhou Y et al (2011) ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Rep 30:2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Kreslavski V, Los D et al (2012) Signalling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154

    Article  CAS  Google Scholar 

  • Lee S-H, Lee K-W, Lee D-G et al (2015) Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol Lett 37:881–890

    Article  CAS  PubMed  Google Scholar 

  • Li F, Xing S, Guo Q et al (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168(9):960–966

    Article  CAS  PubMed  Google Scholar 

  • Li C-Y, Deng G-M, Yang J et al (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genom 13:374

    Article  CAS  Google Scholar 

  • Li C, Yan JM, Li YZ et al (2013) Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid-mediated drought tolerance. Int J Mol Sci 14:21983–21996

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang Z, Li S (2015) Gene chip analysis of Arabidopsis thaliana genomic DNA methylation and gene expression in response to carbendazim. Biotechnol Lett 37:1297–1307

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang W, Liu D et al (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427

    Article  CAS  PubMed  Google Scholar 

  • Liu G-T, Wang J-F, Cramer G et al (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo M, Liu J, Lee RD et al (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligomicroarray. J Integ Plant Biol 52:1059–1074

    Article  CAS  Google Scholar 

  • Ma T-L, Wu W-H, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Zhang H, Qian X et al (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariutto M, Duby F, Adam A et al (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Li R, Luan Y (2015) Classification by integrating plant stress response gene expression data with biological knowledge. Math Biosci 266:65–72

    Article  PubMed  Google Scholar 

  • Mingzhu M, Chen A, Wang Z et al (2015) Plant microarray for gene expression profiling and their application. J Agr Technol 11:93–105

    Google Scholar 

  • Montero-Palmero MB, Martín-Barranco A, Escobar C et al (2014) Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol 201:116–130

    Article  CAS  PubMed  Google Scholar 

  • Moon J-C, Yim WC, Lim SD et al (2014) Differentially expressed genes and ‘in silico’ analysis in response to ozone (O3) stress of soybean leaves. Austral J Crop Sci 8:276–283

    Google Scholar 

  • Motamayor JC, Mockaitis K, Schmutz J et al (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genom Biol 14:r53

    Article  Google Scholar 

  • Neelam SK, Kim Y-K, Grover A (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84:125–143

    Article  Google Scholar 

  • Park JJ, Yi J, Yoon J et al (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J 65:194–205

    Article  CAS  PubMed  Google Scholar 

  • Park HL, Lee SW, Jung KH et al (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71

    Article  CAS  PubMed  Google Scholar 

  • Pena LB, Azpilicueta CE, Gallego SM (2011) Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. J Trace Elem Med Biol 25:125–129

    Article  CAS  PubMed  Google Scholar 

  • Qin DD, Xie SC, Liu G et al (2013) Isolation and functional characterization of heat stress responsive gene TaWTF1 with unknown function from wheat. Zhi wu xue Tong Bao 48:31–37

    Google Scholar 

  • Rashid B, Husnain T, Riazuddin S (2012) Plant genetic engineering: problems and applications. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A (eds), Crop production for agricultural improvement. Springer, Dordrecht

  • Rashid B, Husnain T, Riazuddin S (2014) Genomic approaches and abiotic stress tolerance in plants. In: Ahmad P (ed), Emerging technologies and management of crop stress tolerance, Vol 1. Elsevier, pp 1–26

  • Rerksiri W, Zhang X, Xiong H et al (2013) Expression and promoter analysis of six heat stress-inducible genes in rice. Sci World J 2013

  • Sarkar A, Rakwal R, Bhushan AS et al (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteom Res 9:4565–4584

    Article  CAS  Google Scholar 

  • Shaik R, Ramakrishna W (2014) Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. Plant Physiol 164:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin D, Moon SJ, Han S et al (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Pandey A, Baranwal V et al (2012) Comprehensive expression analysis of rice phospholipase D gene family during abiotic stresses and development. Plant Signal Behav 7:847–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits TH, Rezzonico F, Kamber T et al (2010) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant-Microb Interac 23:384–393

    Article  CAS  Google Scholar 

  • Takehisa H, Sato Y, Antonio BA et al (2013) Global transcriptome profile of rice root in response to essential macronutrient deficiency. Plant Signal Behav 8:e24409

    Article  PubMed  PubMed Central  Google Scholar 

  • Theocharis A, Clement C, Barka AE (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K et al (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:1–9

    Article  Google Scholar 

  • Ueda Y, Uehara N, Sasaki H et al (2013) Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. Plant Physiol Biochem 70:396–402

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tang C, Zhang H et al (2011) TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. Mol Plant Microb Interac 24:79–90

    Article  CAS  Google Scholar 

  • Wang X, Tang C, Huang X et al (2012) Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J Exp Bot 63:4571–4584

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Huang J, Xu S et al (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62:235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiansheng W, Liu Y, Jia Y et al (2012) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39:8147–8158

    Article  Google Scholar 

  • Xianwen Z, Li J, Liu A et al (2012) Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PloS One 7:e49652

    Article  Google Scholar 

  • Xie Y, Cui W, Yuan X et al (2011) Heme Oxygenase-1 is associated with wheat salinity acclimation by modulating reactive oxygen species homeostasis. J Integr Plant Biol 53:653–670

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Kato H, Imai R (2012) Biochemical identification of the OsMKK6OsMPK3 signalling pathway for chilling stress tolerance in rice1. Biochem J 443:95

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chen L-L, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Xue G-P, Way HM, Richardson T et al (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4:697–712

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C-J, Zhao B-C, Ge W-N et al (2011) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol 157:1884–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wei L, Miao H et al (2012a) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genom 13:316

    Article  CAS  Google Scholar 

  • Zhang Q, Chen W, Sun L et al (2012b) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Jiang S, Pan J et al (2014) The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol 16:558–570

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Tang J, Sun J (2015) Hex1 related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos. Biotechnol Lett 37:1421–1429

    Article  PubMed  Google Scholar 

  • Zhou ZS, Yang SN, Li H et al (2013) Molecular dissection of mercury responsive transcriptome and sense/antisense genes in Medicago truncatula. J Hazar Mater 252:123–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, A., Ahad, A., Akhtar, S. et al. Microarray: gateway to unravel the mystery of abiotic stresses in plants. Biotechnol Lett 38, 527–543 (2016). https://doi.org/10.1007/s10529-015-2010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-2010-2

Keywords

Navigation