Skip to main content
Log in

Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad A, Jagadale T, Dhas V, Khan S, Patil S, Pasricha R, Ravi V, Ogale S (2007) Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO2. Adv Mater 19:3295–3299

    Article  CAS  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B 103:283–287

    Article  CAS  Google Scholar 

  • Athanassiou EK, Grass RN, Stark WJ (2006) Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology 17:1668

    Article  CAS  Google Scholar 

  • Bajpai SK, Bajpai M, Sharma L (2012) Copper nanoparticles loaded alginate-impregnated cotton fabric with antibacterial properties. J Appl Polym Sci 126:E318–E325

    Article  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Bicer M, Sisman I (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198:279–284

    Article  CAS  Google Scholar 

  • Blanco-Andujar C, Tung LD, Thanh NTK (2010) Synthesis of nanoparticles for biomedical applications. Annu Rep Prog Chem Sect A 106:553–568

    Article  CAS  Google Scholar 

  • Borkow G, Zatcoff RC, Gabbay J (2009) Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med Hypotheses 73:883–886

    Article  PubMed  CAS  Google Scholar 

  • Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, Ikher S, Huszar M, Zatcoff RC, Marikovsky M (2010) Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen 18:266–275

    Article  PubMed  Google Scholar 

  • Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  CAS  Google Scholar 

  • Chandran CB, Subramanian TV, Felse PA (2001) Chemometric optimization of parameters for biocatalytic reduction of copper ion by a crude enzyme lyzate of Saccharomyces cerevisiae grown under catabolic repression conditions. Biochem Eng J 8:31–37

    Article  CAS  Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:85–103

    Article  Google Scholar 

  • Cheon J, Lee J, Kim J (2012) Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films 520:2639–2643

    Article  CAS  Google Scholar 

  • Dewan M, Kumar A, Saxena A, De A, Mozumdar S (2012) Biginelli reaction catalyzed by copper nanoparticles. PLoS ONE 7:e43078

    Article  PubMed  CAS  Google Scholar 

  • Duan Z, Ma G, Zhang W (2012) Preparation of copper nanoparticles and catalytic properties for the reduction of aromatic nitro compounds. Bull Korean Chem Soc 33:4003–4006

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD (2012) Biotechnological routes to metallic nanoparticles production: mechanistics aspects, antimicrobial activity, toxicity and industrial applications. In: Rai M, Cioffi N (eds) Nano-antimicrobials: progress and prospects, vol Part 3. Springer, Berlin, pp 337–374

    Chapter  Google Scholar 

  • Durán N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288

    Article  PubMed  Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010a) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  Google Scholar 

  • Durán N, Marcato PD, Ingle A, Gade A, Rai M (2010b) Fungi mediated synthesis of silver nanoparticles: characterization processes and applications. In: Rai M, Kövics G (eds) Progress in Mycology. Scientific Publishers, Jodhpur, pp 425–449

    Chapter  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  PubMed  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  PubMed  CAS  Google Scholar 

  • Gomes T, Araújo O, Pereira R, Almeida AC, Cravo A, Bebianno MJ (2013) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res 84:51–59

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Digest J Nanomat Biostruct 7:833–839

    Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547

    Article  PubMed  CAS  Google Scholar 

  • Guajardo-Pacheco Ma J, Morales-Sanchez JE, Gonzalez-Hernandez J, Ruiz F (2010) Synthesis of copper nanoparticles using soybeans as a chelant agent. Mat Lett 64:1361–1364

    Article  Google Scholar 

  • Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A 97:1140–1144

    Article  CAS  Google Scholar 

  • Gupta RK, Kusuma DYK, Lee OS, Srinivasan MP (2012) Copper nanoparticles embedded in a polyimide film for non-volatile memory applications. Mater Lett 68:287–289

    Article  CAS  Google Scholar 

  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B 95:284–288

    Article  CAS  Google Scholar 

  • Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:3191–3196

    Article  PubMed  CAS  Google Scholar 

  • Haverkamp RG, Marshall AT, van Agterveld D (2007) Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. J Nanopart Res 9:697–700

    Article  CAS  Google Scholar 

  • Hofacker AF, Voegelin A, Kaegi R, Weber F-A, Kretzschmar R (2012a) Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil. Geochim Cosmochim Acta. (Available online 15 November 2012)

  • Hofacker A, Voegelin A, Behrens S, Kappler A, Kaegi R, Kretzschmar R (2012b) Biogenic copper and metal sulphide colloid formation in a contaminated floodplain soil. 14.5 Abstract Volume: 10th Swiss Geoscience Meeting. Environmental Biogeosciences, Bern, 16–17th November 2012; Abstr. 14.5

  • Honary S, Barabadi H, Gharaeifathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomat Biostruct 7:999–1005

    Google Scholar 

  • Hosseini MR, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M (2012) Biologically synthesizeised copper sulfide nanoparticles: production and characterization. Mat Sci Semicond Proc 15:222–225

    Article  CAS  Google Scholar 

  • Huang C-C, Lo S-L, Lien H-L (2012) Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chem Eng J 203:95–100

    Article  CAS  Google Scholar 

  • Iwahori K, Takagi R, Kishimoto N, Yamashita I (2011) A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Mat Lett 65:3245–3247

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach. Biotechnol J 4:1582–1585

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. Appl Mat Iterfaces 4:2897–2902

    Article  CAS  Google Scholar 

  • Ku G, Zhou M, Song SL, Huang Q, Hazle J, Li C (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489–7496

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Lee G, Jang NR, Yun JM, Song JY, Kim BS (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotech-2011 (NSTI Publ.). 1:371–374

  • Li L, Liang J, Tao Z, Chen J (2008) CuO particles and plates: synthesis and gas-sensor application. Mater Res Bull 43:2380–2385

    Article  CAS  Google Scholar 

  • Li F, Wu J, Qin Q, Li Z, Huang X (2010) Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technol 198:267–274

    Article  CAS  Google Scholar 

  • Li YJ, Chiu CY, Huang Y (2011) Biomimetic synthesis of inorganic materials and their applications. Pure Appl Chem 83:111–125

    Article  CAS  Google Scholar 

  • Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, Conte A, Del Nobile MA, Sabbatini L, Torsi L (2012) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Meng X, Yi G, Jia J (2011) In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition. J Colloid Interface Sci 356:726–733

    Article  PubMed  CAS  Google Scholar 

  • Majumber DR (2012) Bioremediation: copper Nanoparticles from electronic-waste. Inter J Eng Sci Technol 4:4380–4389

    Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008a) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1777

    Article  PubMed  CAS  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008b) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42(5):1766–1772

    Article  PubMed  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Marcato PD, Durán N (2011) Biogenic silver nanoparticles: applications in medicines and textiles and their health implications. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology. Springer, Germany, pp 249–267

    Chapter  Google Scholar 

  • Matten A (2008) Some methodologies used for the synthesis of cuprous oxide: a review. J Pak Mater Soc 2:40–43

    Google Scholar 

  • Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotech 87:1875–1879

    Article  CAS  Google Scholar 

  • Mitsudome T, Mikami Y, Ebata K, Mizugaki T, Jitsukawa K, Kaneda K (2008) Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chem Commun 39:4804–4806

    Article  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Islamkhan M, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463

    Article  PubMed  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  PubMed  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79

    Article  PubMed  CAS  Google Scholar 

  • Prabhu S, Poulose E (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Intern Nano Lett 2:32

    Article  Google Scholar 

  • Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Indian J Phys 84:1355–1360

    Article  CAS  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan R, Bhargava SK, Bansal V (2011) Biological synthesis of copper/copper oxide nanoparticles. Chemca Conference 466. www.conference.net.au/chemeca2011/papers/466.pdf

  • Ramu VG, Bordoloi A, Nagaiah TC, Schuhmann W, Muhler M, Cabrele C (2012) Appl Catal A 431–432:88–94

    Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marilani A, Rajakumar G, Rahuman AA (2012) Mat Lett 71:114–116

    Article  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Rajendran V (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochima Acta Part A 97:1140–1144

    Article  Google Scholar 

  • Santhanalakshmi J, Parimala L (2012) The copper nanoparticles catalysed reduction of substituted nitrobenzenes: effect of nanoparticle stabilizers. J Nanopart Res 14:1090

    Article  CAS  Google Scholar 

  • Santo CE, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 1(1):46–52

    Article  PubMed  CAS  Google Scholar 

  • Seabra AB, Durán N (2012) Microbial syntheses of metallic sulfide nanoparticles: an overview. Curr Biotechnol 1:287–296

    Article  Google Scholar 

  • Seabra AB, Haddad P, Durán N (2013) Biogenic synthesis of nanostructurated iron compounds: Applications and perspectives. IET-Nanobiotechnology in press

  • Sing J, Srivastava M, Roychoudhury A, Lee DW, Lee SH, Malhotra BD (2013) Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application. J Phys Chem B 117:141–152

    Article  Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369

    Article  CAS  Google Scholar 

  • Sinha S, Pan L, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Srivastava A (2009) Antiviral activity of copper complexes of isoniazid against RNA tumor viruses. Resonance 14(8):754–760

    Article  CAS  Google Scholar 

  • Srivastava M, Sing J, Mishra RK, Ojha AK (2013) Electro-optical and magnetic properties of monodispersed colloidal Cu2O nanoparticles. J Alloy Compd 555:123–130

    Article  CAS  Google Scholar 

  • Svintsitskiy DA, Chupakhin AP, Slavinskaya EM, Stonkus OA, Stadnichenko AI, Koscheev SV, Boronin AI (2013) Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation. J Mol Catal A 368–369:95–106

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine NBM 6:257–262

    Article  CAS  Google Scholar 

  • Tilaki RM, Iraji Zad A, Mahadavi SM (2007) Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl Phys A 88:415–419

    Article  CAS  Google Scholar 

  • Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bacterial effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed 5:277–283

    CAS  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran KR (2010) Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles. Glob J Biotechnol Biochem 5:153–160

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM-J Miner Met Mater Soc 62:102–104

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS (2012) A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng 4:99–106

    Article  CAS  Google Scholar 

  • Veerapandian M, Sadhasivam S, Choi J, Yun K (2012) Glucosamine functionalized copper nanoparticles: preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation. Chem Eng J 209:558–567

    Article  CAS  Google Scholar 

  • Wang S, Huang X, He Y, Huang H, Wu Y, Hou L, Liu X, Yang T, Zou J, Huang B (2012) Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50:2119–2125

    Article  CAS  Google Scholar 

  • Zhang K (2012) Fabrication of copper nanoparticles/graphene oxide composites for surface-enhanced Raman scattering. Appl Surf Sci 258:7327–7329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank FAPESP, CNPq, INOMAT (MCTI/CNPq), the Brazilian Network of Nanotoxicology (MCTI/CNPq), NANOBIOSS (MCTI/CNPq) and FONDECYT project 1130854 for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Rubilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubilar, O., Rai, M., Tortella, G. et al. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35, 1365–1375 (2013). https://doi.org/10.1007/s10529-013-1239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1239-x

Keywords

Navigation