Skip to main content

Biotechnological Routes to Metallic Nanoparticles Production: Mechanistic Aspects, Antimicrobial Activity, Toxicity and Industrial Applications

  • Chapter
  • First Online:
Nano-Antimicrobials

Abstract

This chapter describes the biogenic metallic nanoparticles synthesis and their mechanistic aspects in the syntheses, and in their antimicrobial, toxicity, and cytotoxicity activities, and industrial applications. Although many aspects of metallic nanoparticles have already been studied, many questions are still open to discussion especially related to their final consequences. Silver and gold have been extensively studied; however, the other metallic nanoparticles such as cadmium, copper, iron, palladium, platinum, tellurium or titanium are in their initial stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora, S., J. Jain, J.M. Rajwade and K.M. Paknikar. (2009). Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharmacol. 236: 310–318.

    Google Scholar 

  • Arvizo, R., R. Bhattacharya and P. Mukherjee. (2010). Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 7: 753–763.

    Google Scholar 

  • Arya, V. (2010). Living systems: eco-friendly nanofactories. Digest J. Nanomater. Biostruct. 5: 9–21.

    Google Scholar 

  • AshaRani, P.V., G.L.K. Mun, M.P. Hande and S. Valiyaveetti. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3: 279–290.

    Google Scholar 

  • Baesman, S.M., T.D. Bullen, J. Dewald, D. Zhang, S. Curran, F.S. Islam, T.J. Beveridge and R.S. Oremland. (2007). Formation of tellurium nanocrystals during anaerobic growth of bacteria that use the oxyanions as respiratory electron acceptors. Appl. Environ. Microbiol. 73: 2135–2143.

    Google Scholar 

  • Bar, H., D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De and A. Misra. (2009a). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 339: 134–139.

    Google Scholar 

  • Bar, H., D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne and A. Misra. (2009b). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 348: 212–216.

    Google Scholar 

  • Basavaraja, S., S.D. Balaji, A. Lagashetty, A.H. Rajasab and A. Venkataraman. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum Mater. Res. Bull. 43: 1164–1170.

    Google Scholar 

  • Bhattacharjee, R.R., A.K. Das, D. Haldar, S. Si, A. Banerjee and T.K. Mandal. (2005). Peptide-assisted synthesis of gold nanoparticles and their self-assembly. J. Nanosci. Nanotechnol. 5: 1141–1147.

    Google Scholar 

  • Bhattacharya, R. and P. Mukherjee. (2008). Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 60: 1289–1306.

    MathSciNet  Google Scholar 

  • Birla, S.S., V.V. Tiwari, A.K. Gade, A.P. Ingle, A.P. Yadav and M.K. Rai. (2009). Fabrication of silver nanoparticles by and its combined effect against Escherichia coli, Pseudomonas aeruginosa, Phoma glomerata and Staphylococcus aureus. Lett. Appl. Microbiol. 48: 173–179.

    Google Scholar 

  • Blanco-Andujar, C., D. Tung and N.T.K. Thanh. (2010). Synthesis of nanoparticles for biomedical applications. Annu. Rep. Prog. Chem. Sect. A. 106: 553–568.

    Google Scholar 

  • Blum, J.S., A.B. Bindi, J. Buzzelli, ·J.F. Stolz and R.S. Oremland. (1998). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171: 19–30.

    Google Scholar 

  • Brown, S. (2001). Protein-mediated particle assembly. Nano Lett. 1: 391–394.

    Google Scholar 

  • Bunge, M., L.S. Søbjerg, A.S.E. Rotaru, D. Gauthier, A.T. Lindhardt, G. Hause, K. Finster, P. Kingshott, T. Skrydstrup and R.L. Meyer. (2010). Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol. Bioeng. 107: 206–215.

    Google Scholar 

  • Carlson, C., S.M. Hussain, A.M. Schrand, L.K. Braydich-Stolle, K.L. Hess, R.L. Jones and J.J. Schlager. (2008). Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112: 13608–13619.

    Google Scholar 

  • Chandran, C.B., T.V. Subramanian and P.A. Felse. (2001). Chemometric optimization of parameters for biocatalytic reduction of copper ion by a crude enzyme lyzate of Saccharomyces cerevisiae grown under catabolic repression conditions. Biochem. Eng. J. 8: 31–37.

    Google Scholar 

  • Chen, X. and H.J. Schluesener. (2008). Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176: 1–12.

    Google Scholar 

  • Chen, Z., H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma and L. Wan. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163: 109–120.

    Google Scholar 

  • Chen, T., Y.S. Wong, W. Zheng, Y. Bai and L. Huang. (2008). Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf. B Biointerfaces. 67: 26–31.

    Google Scholar 

  • Cho, K.H., J.E. Park, T. Osaka and S.G. Park. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956–960.

    Google Scholar 

  • Choi, O. and Z. Hu. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42: 4583–4588.

    Google Scholar 

  • Das, S.K., A.R. Das and A.K. Guha. (2009). Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25: 8192–8199.

    Google Scholar 

  • Dastjerdi, R. and M. Montazer. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerface 79: 5–18.

    Google Scholar 

  • Dhanjal, S. and S.S. Cameotra. (2010). Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Fact. 9: 52. doi:10.1186/1475-2859-9-52.

    Google Scholar 

  • Duff, D.G., P.P. Edwards and B.F.G. Johnson. (1995). Formation of a polymer-protected platinum sol: a new understanding of the parameters controlling morphology. J. Phys. Chem. 99: 15934–15944.

    Google Scholar 

  • Durán, N, P.D. Marcato, O.L. Alves, G.I.H De Souza and E. Esposito. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3: 8. doi:10.1186/1477-3155-3-8.

    Google Scholar 

  • Durán, N., P.D. Marcato, G.I.H. De Souza, O.L. Alves and E. Esposito. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203–208.

    Google Scholar 

  • Durán, N., P.D. Marcato, R. De Conti, O.L. Alves and M. Brocchi. (2008). Silver nanoparticles: control of pathogens, toxicity and cytotoxicity. Nanotoxicology 2: S32.

    Google Scholar 

  • Durán, N., P.D. Marcato, A. Ingle, A. Gade and M. Rai. (2010a). Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In Progress in Mycology (Mahendra Rai and George Kövics, Eds), Scientific Publishers, Jodhpur, India, Ch 16, pp. 425–449.

    Google Scholar 

  • Durán, N., P.D. Marcato, R. De Conti, O.L. Alves, F.T.M. Costa, and M. Brocchi. (2010b). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 21: 949–959.

    Google Scholar 

  • Durán, N., P.D. Marcato, A. Ingle, A. Gade and M. Rai. (2010c). Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In Progress in Mycology (Mahendra Rai and George Kövics, Eds), Scientific Publishers, Jodhpur, India, Ch 16, pp. 425–449. ISBN: 978-81-7233-636-3.

    Google Scholar 

  • Durán, N., P.D. Marcato, M. Durán, A. Yadav, A. Gade and M. Rai. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl. Microbiol. Botechnol. 90: 1609–1624.

    Google Scholar 

  • Egorova, E.M. and A.A. Revina. (2000). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf. A Physicochem. Eng. Asp. 168: 87–96.

    Google Scholar 

  • El-Ansary, A.and S. Al-Daihan. (2009). On the toxicity of therapeutically used nanoparticles: an overview. J. Toxicol. 2009: 754–810.

    Google Scholar 

  • Fayaz, A.M, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan and R. Venketesan. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine NBM. 6: 103–109.

    Google Scholar 

  • Fesharaki, P.J., P.Nazari, M. Shakibaie, S. Rezaie, M. Banoee, M. Abdollahi and A.R. Shahverdi. (2010). Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 41: 461–466.

    Google Scholar 

  • Gade, A.K., P. Bonde, A.P. Ingle, P.D. Marcato, N. Durán and M.K. Raí. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy 2: 243–247.

    Google Scholar 

  • Gade, A., A. Ingle, C. Whiteley and M. Rai. (2010a). Mycogenic metal nanoparticles: progress and applications. Biotechnol. Lett. 32: 593–600.

    Google Scholar 

  • Gade, A., S. Gaikwad, V. Tiwari, A. Yadav, A. Ingle and M. Rai. (2010b). Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr. Nanosci. 6: 370–375.

    Google Scholar 

  • Gao, Y. and R. Cranston. (2008). Recent advances in antimicrobial treatments of textiles. Textile Res. J. 78: 60–72.

    Google Scholar 

  • Goffin, P., F. Lorquet, M. Kleerebezem and P. Hols. (2004). Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. J. Bacteriol. 186: 6661–6666.

    Google Scholar 

  • Govender, Y., T.L. Riddin, M. Gericke and C.G. Whiteley. (2010). On the enzymatic formation of platinum nanoparticles. J. Nanopart. Res. 12: 261–271.

    Google Scholar 

  • Gupta, A., K. Matsui, L. Jeng-Fan and S. Silver. (1999). Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5: 183–188.

    Google Scholar 

  • Gupta, B., R.A. Agarwal and M.S. Alam. (2010). Textile-based smart would dressing. Indian J. Fibre Textile Res. 35: 174–187.

    Google Scholar 

  • Hennebel, T., B.De Gusseme, N. Boon and W. Verstraete. (2009). Biogenic metals in advanced water treatment. Trends Biotechnol. 27: 90–98.

    Google Scholar 

  • Hoag, G.E., J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and S. Rajender, Varma, R.S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J. Mater. Chem. 19: 8671–8677.

    Google Scholar 

  • Huber, S.C., P.D. Marcato, G. Nakazato, D. Martins and N. Durán. (2009). Textile fabrics loading biosynthetic silver nanoparticles: bactericidal activity against gram-positive and gram-negative bacteria. CIFARP-2009, 7th. Intern. Congress of Pharm. Sci., 6–9 September, Riberão Preto, SP, 2009, Abstr. FQ 012.

    Google Scholar 

  • Hussain, S.M. and J.J. Schlager. (2009). Safety evaluation of silver nanoparticles: inhalation model for chronic exposure. Toxicol. Sci. 108: 223–224.

    Google Scholar 

  • Ingle, A., A. Gade, S. Pierrat, C. Sönnichsen and M. Rai. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4: 141–144.

    Google Scholar 

  • Iosin, M., P. Baldeck and S. Astilean. (2010). Study of tryptophan assisted synthesis of gold nanoparticlesby combining UV–Vis, fluorescence, and SERS spectroscopy. J. Nanopart. Res. doi: 10.1007/s11051-010-9869-6

    Google Scholar 

  • Jha, A.K. and K. Prasad. (2010). Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol. J. 5: 285–291.

    Google Scholar 

  • Jha, A.K., K. Prasad, K. Prasad and A.R. Kulkarni. (2009). Plant system: nature’s nanofactory. Colloids Surf. B Biointerfaces 73: 219–223.

    Google Scholar 

  • Jose, G.P., S. Santra, S.K. Mandal and T.K. Sengupta (2011). Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J. Nanobiotechnol. 9: 1–8.

    Google Scholar 

  • Kalimuthu, K., R.S. Babu, D. Venkataraman, M. Bilal and S. Gurunathan. (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65: 150–153.

    Google Scholar 

  • Kasthuri, J., K. Kathiravan and N. Rajendiran. (2009). Phyllanthin-assisted synthesis of silver and gold nanoparticles: a novel biological approach. J. Nanopart. Res. 11: 1075–1085.

    Google Scholar 

  • Korbekandi, H., S. Iravani and S. Abbasi. (2009). Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 29: 279–306.

    Google Scholar 

  • Krishnaraj, C., E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan and N. Mohan. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 76: 50–56.

    Google Scholar 

  • Krumov, N., I. Perner-Nochta, S. Oder, V. Gotcheva, A. Angelov and C. Posten. (2009). Production of inorganic nanoparticles by microorganisms. Chem. Eng. Technol. 32: 1026–1035.

    Google Scholar 

  • Kumar, V. and S.K. Yadav. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84: 151–157.

    Google Scholar 

  • Kumar, S.A., M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, R. Pasricha, A. Ahmad and M.I. Khan. (2007a). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29: 439–443.

    Google Scholar 

  • Le, A.T., L.T. Tam, P.D. Tam, P.T. Huy, T.Q. Huy, N.V. Hieu, A.A. Kudrinskiy and Y.A. Krutyakov. (2010). Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mat. Sci. Eng. C. 30: 910–916.

    Google Scholar 

  • Lee, C., J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon and D.L. Sedlak. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 42: 4927–4933.

    Google Scholar 

  • Li, S., Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang and Q. Zhang (2007). Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chem. 9: 852–858.

    Google Scholar 

  • Li, W.R., X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. OU-Yang and Y.B. Chen. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85: 1115–1122.

    Google Scholar 

  • Lin, Z.Y., C.H. Zhou, J.M. Wu, J.Z. Zhou and L. Wang. (2005). A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61: 1195–1200.

    Google Scholar 

  • Liong, M., B. France, K.A. Bradley and J.I. Zink. (2009). Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv. Mater. 21: 1684–1689.

    Google Scholar 

  • Lukman, A.I., B. Gong, C.E. Marjo, U. Roessner and A.T. Harris. (2011). Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 353: 433–444.

    Google Scholar 

  • Maarof, N.D., Z.M. Ali, N.M. Nor and M. Hassan. (2010). Isolation of NADP+- geraniol dehydrogenase from Polygonum minus. Nat. Biotechnol. Sem. (Kerala, Kampur) A34: 1–4.

    Google Scholar 

  • Marambio-Jones, C. and E.M.V. Hoek. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12: 1531–1551.

    Google Scholar 

  • Marcato, P.D. and N. Durán. (2011). Biogenic silver nanoparticles: applications in medicines and textiles and their health implications, In: Metal Nanoparticles in Microbiology (Mahendra Rai, Nelson Duran and Gordon Southam, Eds), Springer, Germany, Ch 11, pp. 249–283, ISBN:978-3-642-18311-9.

    Google Scholar 

  • Marcato, P.D., R. De Conti, B.R. Bergmann and N. Durán. (2008). Silver nanoparticles/clindamycin:antileishmanial activity. Proceeding of the 7th Brazilian MRS Meeting (SBPMAT), Guarujá, Brazil, 2008.

    Google Scholar 

  • Marsili, E., D.B. Baron, I. D. Shikhare, D. Coursolle, J.A. Gralnick and D.R. Bond. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acd. Sci. USA 105: 3968–3973.

    Google Scholar 

  • Materska, M. (2008). Quercetin and its derivatives: chemical structure and bioactivity – a review. Pol. J. Food Nutr. Sci. 58: 407–413.

    Google Scholar 

  • Midander, K., P. Cronholm, H.L. Karlsson, K. Elihn, L. Möller, C. Leygraf and I.O. Wallinder (2009). Surface characteristics, copper release, and toxicity of nano and micrometer-sized copper and copper(II) oxide particles: a cross disciplinary study. Small 5: 389–399.

    Google Scholar 

  • Mikheenko, I.P., M. Rousset, S. Dementin and L.E. Macaskie. (2008). Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl. Environ. Mictobiol. 74: 6144–6146.

    Google Scholar 

  • Mohanpuria, P., N.K. Rana and S.K. Yadav. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10: 507–517.

    Google Scholar 

  • Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar and M. Khan. (2001). Bioreduction of acyl ions by the fungus, Verticillum species and surface trapping of the gold nanoparticles formed. Angew Chem. Int. Ed. 40: 3585–3583.

    Google Scholar 

  • Mukherjee P, M. Roy, B.P. Mandal, G.K. Dey, P.K. Mukherjee, J. Ghatak, A.K. Tyagi and S.P. Kale. (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19: 1–7.

    Google Scholar 

  • Naik, R.R., S.J. Stringer, G. Agarwal, S.E. Jones and M.O. Stone. (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1: 169–172.

    Google Scholar 

  • Nair, L.S. and C.T. Laurencin. (2007). Silver nanoparticles: Synthesis and therapeutic applications. J. Biomed. Nanotechnol. 3: 301–316.

    Google Scholar 

  • Nair, B. and T. Pradeep. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 4: 295–298.

    Google Scholar 

  • Nanda, A. and M. Saravanan. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE Nanomed. NBM 5: 452–456.

    Google Scholar 

  • Nangia,Y., N. Wangoo, S. Sharma, J.S. Wu, V. Dravid, G.S. Shekhawat and C.R. Suri. (2009). Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl. Phys.Lett. 94: 233901.

    Google Scholar 

  • Narayanan, K.B. and N. Sakthivel. (2010). Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156: 1–13.

    Google Scholar 

  • Ogi, T., N. Saitoh, T. Nomura and Y. Konishi. (2010). Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J. Nanopart. Res. 12: 2531–2539.

    Google Scholar 

  • Oremland, R.S., J.S. Blum, C.W. Culbertson, P.T. Visscher, L.G. Miller, P. Dowdle and F.E. Strohmaier. (1994) Isolation, growth, and metabolism of an obligatory anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60: 3011–3019.

    Google Scholar 

  • Oremland, R.S., M.J. Herbel, J.S. Blum, S. Langley,T.J. Beveridge, P.M. Ajayan, T. Sutto, A.V. Ellis and S. Curran. (2004). Structural and spectral features of selenium nanospheres produced by Se-respiring bactéria. Appl. Environ. Microbiol. 70: 52–60.

    Google Scholar 

  • Panyala, N.R., E.M. Peña-Méndez and J. Havel. (2008). Silver or silver nanoparticles: a hazardous threat to the environment and human health? J. Appl. Biomed. 6: 117–129.

    Google Scholar 

  • Parikh, R.Y., S. Singh, B.L.V. Prasad, M.S. Patole, M. Sastry and Y.S. Shouche. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem. 9: 1415–1422.

    Google Scholar 

  • Park, E.J., J. Yi, Y. Kim, K. Choi and K. Park. (2010). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro 24: 872–878.

    Google Scholar 

  • Patil, S.S., R.S. Dhumal, M.V.Varghese, A.R. Paradkar and P.K. Khanna (2009). Synthesis and antibacterial studies of chloramphenicol loaded nano-silver against Salmonella typhi. Synth. React. Inorg. Met. Org. Nano Met. Chem. 39: 65–72.

    Google Scholar 

  • Popescu, M., A. Velea and A. Lőrinczi. (2010). Biogenic production of nanoparticles. Digest J. Nanomater. Biostruct. 5: 1035–1040.

    Google Scholar 

  • Prasad, K., A.K. Jha and A.R. Kulkarni. (2007). Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res. Lett. 2: 248–250.

    Google Scholar 

  • Pujols-Ayala, I., C.A. Sacksteder and B.A. Barry. (2003). Redox-active tyrosine residues: Role for the peptide bond in electron transfer. J. Am. Chem. Soc. 125: 7536–7538.

    Google Scholar 

  • Raffi, M., F. Hussain, T.M. Bhatti, J.I. Akhter, A. Hameed and M.M. Hasan. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 24: 192–196.

    Google Scholar 

  • Rahman, M.F., J. Wang, T.A. Patterson, U.T. Saini, B.L. Robinson, G.D. Newport, R.C. Murdock, J.J. Schlager, D.M. Hussain and S.F. Ali. (2009). Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187: 1521.

    Google Scholar 

  • Rai, M.K., A.P. Yadav and A.K. Gade. (2008). Current trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol. 28: 277–284.

    Google Scholar 

  • Rai, M., A. Yadav and A. Gade (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76–83.

    Google Scholar 

  • Rai, M., S. Birla, I. Gupta, A. Ingle, A. Gade, K. Abd-Elsalam, P.D. Marcato and N. Durán. (2011). In Diversity in synthesis and bioactivity of inorganic nanoparticles: progress and pitfalls (Vladimir Torchilin-Northeastern University, USA, Chief Editor) Biomedical Nanotechnology Series. Vol 5. Pan Stanford Publishing, USA.

    Google Scholar 

  • Riddin, T.L., M. Gericke and C.G. Whiteley. (2006). Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17: 3482–3489.

    Google Scholar 

  • Riddin, T.L., Y. Govender, M. Gericke and C.G. Whiteley. (2009). Two different hydrogenase enzymes from sulfate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb. Technol. 45: 267–273.

    Google Scholar 

  • Riddin, T.L., M. Gericke and C.G. Whiteley. (2010). Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzyme Microb. Technol. 46: 501–505.

    Google Scholar 

  • Ruparelia, J.P., A.K. Chatterjee, S.P. Duttagupta and S. Mukherji. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4: 707–716.

    Google Scholar 

  • Safaepour, M., A.R. Shahverdi, H.R. Shahverdi, M.R. Khorramizadeh and A.R. Gohari. (2009). Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J. Med. Biotechnol. 1: 111–115.

    Google Scholar 

  • Selvakannan, P.R., A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R. Pasricha, A.B. Mandale and M. Sastry. (2004a). Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20: 7825–7836.

    Google Scholar 

  • Selvakannan, P., S. Mandal, S. Phadtare, A. Gole, R. Pasricha, S.D. Adyanthaya and M. Sastry. (2004b). Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interface Sci. 269: 97–102.

    Google Scholar 

  • Shakibaie, M., M.R. Khorramizadeh, M.A. Faramarzi, O. Sabzevari and A.R. Shahverdi. (2010). Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol. Appl. Biochem. 56: 7–15

    Google Scholar 

  • Sharma, V.K., R.A. Yngard and Y. Lin. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advan. Colloid Interface Sci. 145: 83–96.

    Google Scholar 

  • Si, S. and T.K. Mandal. (2007). Trytophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem. Eur. J. 13: 3160–3168.

    Google Scholar 

  • Singh, M., S. Singh, S. Prasad and I.S. Gambhir. (2009). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J. Nanomater. Biostruct. 3: 115–122.

    Google Scholar 

  • Sinha, S., I. Pan, P. Chanda and S.K. Sen. (2009). Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci. 19: 1113–1130.

    Google Scholar 

  • Sintubin, L., W.E. Windt, J. Dick, J. Mast, D.V. Ha, W. Verstarete and N. Boon. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 84: 741–761.

    Google Scholar 

  • Sivaraman, S.K., I. Elango, S. Kumar and V. Santhanam. (2009). A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97: 1055–1059.

    Google Scholar 

  • Slocik, J.M., R.R. Naik, M.O. Stone and D.W. Wright. (2005). Viral templates for gold nanoparticle synthesis. J. Mater. Chem. 15: 749–753.

    Google Scholar 

  • Song, J.Y., E.Y. Kwon and B.S. Kim. (2010). Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioproc. Biosyst. Eng. 33: 159–164.

    Google Scholar 

  • Studer, A.M., L.K. Limbach, L. Van Duc, F. Krumeich, E.K. Athanassiou, L.C. Gerber, H. Moch and W.J. Stark. (2010). Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxico. Lett. 197: 169–174.

    Google Scholar 

  • Sung, J.H., J.H. Ji, J.U. Yoon, D.S. Kim, M.Y. Song, J. Jeong, B.S. Han, J.H. Han, Y.H. Chung, J. Kim, T.S. Kim, H.K. Chang, E.J. Lee, J.H. Lee and I.J. Yu. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicol. 20: 567–574.

    Google Scholar 

  • Sung, J.H., J.H. Ji, J.D. Park, J.U.Yoon, D.S. Kim, K.S. Jeon, M.Y. Song, J. Jeong, B.S. Han, J.H. Han, Y.H. Chung, H.K. Chang, J.H. Lee, M.H. Cho, B.J. Kelman and I.J. Yu. (2009). Sub-chronic inhalation toxicity of silver nanoparticles. Toxicol. Sci. 108: 452–461.

    Google Scholar 

  • Thakkar, K.N., S.S. Mhatre and R.Y. Parikh. (2010). Biological synthesis of metallic nanoparticles. Nanomed. NBM. 6: 257–262.

    Google Scholar 

  • Totaro, P. and M. Rambaldini. (2009). Efficacy of antimicrobial activity of slow release silver nanoparticles dressing in post-cardiac surgery mediastinitis. Interact. Cardiovasc. Thorac. Sur. 8:153–154.

    Google Scholar 

  • Uboldi, C., D. Bonacchi, G. Lorenzi, M.I. Hermanns, C. Pohl, G. Baldi, R.E. Unger and C.J. Kirkpatrick. (2009). Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle Fibre Toxicol. 6: 1–12.

    Google Scholar 

  • Varshney, R., S. Bhadauria, M.S. Gaur and R. Pasricha. (2010). Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM. J. Miner. Met. Mater. Soc. 62: 102–104.

    Google Scholar 

  • Vijayaraghavan, K. and S.P.K. Nalini. (2010). Biotemplates in the green synthesis of silver nanoparticles. Biotechnol. J. 5: 1098–110.

    Google Scholar 

  • Yang, X., Q. Li, H. Wang, J. Huang, L. Lin, W. Wang, D. Sun, Y. Su, J.B. Opiyo, L. Hong, Y. Wang, N. He and L. Jia. (2010). Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart. Res. 12: 1589–1598.

    Google Scholar 

  • Yen, H.J., S.H. Hsu and C.L. Tsai. (2009). Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small. 5: 1553–1561.

    Google Scholar 

  • Zhang, W., X. Qiao and J. Chen. (2007). Synthesis of silver nanoparticles. Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng. B 142: 1–15.

    Google Scholar 

  • Zhang, X.R., X.X. He, K.M. Wang, Y.H. Wang, H.M. Li and W.H. Tan. (2009). Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J. Nanosci. Nanotechnol. 9: 5738–5744.

    Google Scholar 

  • Zhang, X., S. Yan, R.D. Tyagi and R.Y. Surampalli. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82: 489–494.

    Google Scholar 

Download references

Acknowledgements

Support from FAPESP, CNPq and DST/CNPq Brazil-India Project is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Durán, N., Marcato, P.D. (2012). Biotechnological Routes to Metallic Nanoparticles Production: Mechanistic Aspects, Antimicrobial Activity, Toxicity and Industrial Applications. In: Cioffi, N., Rai, M. (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24428-5_12

Download citation

Publish with us

Policies and ethics