Skip to main content
Log in

Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review presents the syntheses and characterizations of size and morphology, as well as the mechanistic aspects, of metallic oxide nanoparticles synthesized by biogenic processes. Furthermore, the importance of their biogenic synthesis is compared with chemical synthesis, and their applications are discussed from the ecological and environmental view points. To our best knowledge, this review presents for the first time the synthesis of several biogenic oxide nanoparticles, with great applications under the perspective of cost effective and eco-friendly points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamian ZN, Abovian HV, Aroutiounian VM (1996) Smoke sensor on the base of Bi2O3 sesquioxide. Sens Actuators B 35:241–243

    Article  Google Scholar 

  • Arya V (2010) Living systems: eco-friendly nanofactories. Digest J Nanomat Biostruct 5:9–21

    Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bharde A, Wani A, Shouche Y, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  Google Scholar 

  • Blanco-Andujar C, Tung LD, Thanh NTK (2010) Synthesis of nanoparticles for biomedical applications. Annu Rep Prog Chem Sect A 106:553–568

    Article  CAS  Google Scholar 

  • Burgos WD, McDonough JT, Senko JM, Zhang GX, Dohnalkova AC, Kelly SD, Gorby Y, Kemner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim Cosmochim Acta 72:4901–4915

    Article  CAS  Google Scholar 

  • Chin HS, Cheong KY, Razak KA (2011) Controlled synthesis of Sb2O3 nanoparticles by chemical reducing method in ethylene glycol. J Nanopart Res 13:2807–2818

    Article  CAS  Google Scholar 

  • Clark DL, Neu MP, Runde W, Keogh DW (2006) Uranium and uranium compounds. Kirk–Othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.212801140312011,8a01.Pub.3

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosyntheis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(8):1–7

    Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010a) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  Google Scholar 

  • Durán N, Marcato PD, Ingle A, Gade A, Rai M (2010b) Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Rai M, Kövics G (eds) Progress in mycology. Scientific Publishers, Jodhpur, pp 425–449, Ch 16. ISBN 978-81-7233-636-3

    Chapter  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  Google Scholar 

  • Fan HT, Teng XM, Pan SS, Ye C, Li GH, Zhang LD (2005) Optical properties of δ-Bi2O3 thin films grown by reactive sputtering. Appl Phys Lett 87:231916

    Article  Google Scholar 

  • Frankel RB, Papaefthymiou C, Blakemore RP, O’Brien WD (1983) Fe3O4 precipitation in magntotactic bacteria. Biochim Biophys Acta 763:147–159

    Article  CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  CAS  Google Scholar 

  • Han T, Fan T, Chow SK, Zhang D (2010) Biogenic N–P-codoped TiO2: synthesis, characterization and photocatalytic properties. Bioresour Technol 101:6829–6835

    Article  CAS  Google Scholar 

  • Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:3191–3196

    Article  CAS  Google Scholar 

  • Heuer AH (1987) Transformation toughening in ZrO2-containing ceramics. J Am Ceram Soc 700:689–698

    Article  Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 927–934

  • Jha AK, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009a) Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach. Biotechnol J 4:1582–1585

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009c) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerf 71:226–229

    Article  CAS  Google Scholar 

  • Kumar U, Shete A, Harle AS, Kasyutich O, Schwarzacher W, Pundle A, Poddar P (2008) Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem Mater 20:1484–1491

    Article  CAS  Google Scholar 

  • Li YJ, Chiu CY, Huang Y (2011) Biomimetic synthesis of inorganic materials and their applications. Pure Appl Chem 83:111–125

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1992a) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234

    Article  CAS  Google Scholar 

  • Lovley D, Phillips EJP (1992b) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  • Marcato PD, Durán N (2011) Biogenic silver nanoparticles: applications in medicines and textiles and their health implications. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology. Springer, Germany, pp 249–267, Chap. 11

    Chapter  Google Scholar 

  • Matten A (2008) Some methodologies used for the synthesis of cuprous oxide: a review. J Pak Mater Soc 2:40–43

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Murphy WM, Shock EL (1999) Environmental aqueous geochemistry of actinides. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Mineralogical Society of America, Chantilly, pp 221–254

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y (1999) Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J Bacteriol 181:2142–2147

    CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DM (1995) Transport ofmetal binding peptides by HMT-1, a fission yeast ABC type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  Google Scholar 

  • Ozkaya T, Baykal A, Toprak MS, Koseoglu Y, Durmus Z (2009) Reflux synthesis of Co3O4nanoparticles and its magnetic characterization. J Magnet Magnet Mat 321:2145–2149

    Article  CAS  Google Scholar 

  • Popescu M, Velea A, Lorinczi A (2010) Biogenic production of nanoparticles. Digest J Nanomat Biostruct 5:1035–1040

    Google Scholar 

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Natural Sci 1:129–135

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Indian J Phys 84:1355–1360

    Article  CAS  Google Scholar 

  • Rao CNR, Subba Rao GV, Ramdas S (1969) Phase transformations and electrical properties of bismuth sesquioxide. J Phys Chem 73:672–675

    Article  CAS  Google Scholar 

  • Senko JM, Kelly SD, Dohnalkova AC, McDonough JT, Kemner KM, Burgos WD (2007) The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV). Geochim Cosmochim Acta 71:4644–4654

    Article  CAS  Google Scholar 

  • Singer DM, Farges F, Brown GE Jr (2009) Biogenic nanoparticulate UO2: synthesis, characterization, and factors affecting surface reactivity. Geochim Cosmochim Acta 73:3593–3611

    Article  CAS  Google Scholar 

  • Singh S, Bhatta UM, Satyam PV, Dhawan A, Sastry M, Prasad BLV (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18:2601–2606

    Article  CAS  Google Scholar 

  • Sinha S, Pan L, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological Resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Skorodumova NV, Jonsson A, Herranen M, Stromme M, Niklasson GA, Johansson B, Simak SI (2005) Random conductivity of δ-Bi2O3 films. Appl Phys Lett 86:241910

    Article  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine: NBM 6:257–262

    Article  CAS  Google Scholar 

  • Uddin I, Adhynthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol 8:3909–3913

    Article  CAS  Google Scholar 

  • Ulrich KU, Ilton ES, Veeramani H, Sharp JO, Bernier-Latmani R, Schofield EJ, Bargar JR, Giammar DE (2009) Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochim Cosmochim Acta 73:6065–6083

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Support from FAPESP, CNPq, Brazilian Networks of Nanobiotechnology, Nanocosmetics, Carbon Nanotubes, Nanotoxicology (MCT/CNPq), and INOMAT (MCT-CNPq) are acknowledged. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durán, N., Seabra, A.B. Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95, 275–288 (2012). https://doi.org/10.1007/s00253-012-4118-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4118-9

Keywords

Navigation