Skip to main content
Log in

Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011

  • Review article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Ageing is a progressive shrinkage of the homeodynamic space and, at the molecular level, it is associated with the stochastic occurrence and progressive accumulation of molecular damage. Imperfection of the maintenance and repair systems results in the failure of homeodynamics characterized by increased molecular heterogeneity, altered cellular functioning, reduced stress tolerance and reduced remodeling and adaptation, which lead to increased probability of diseases and eventual death. Although, several types of molecular damages have been shown to accumulate and increase molecular heterogeneity during ageing, its relevance and significance with respect to the physiology, survival and longevity remains to be determined. Such studies are essential for establishing biomarkers of health, frailty, remodeling and adaptation, and for developing effective methods for the prevention and reversion of age-related changes. A promising strategy for ageing intervention and modulation is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Because a number of ethical, social, and personal implications emerge by the development and use of anti-ageing and life-extending technologies, biogerontologists should incorporate these elements while developing their research agenda in biogerontology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9:252–272

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:60–69

    Article  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2008) The gene cluster hypothesis of aging and longevity. Biogerontology 9:57–66

    Article  PubMed  Google Scholar 

  • Blagosklonny MV (2009) Validation of anti-aging drugs by treating age-related diseases. Aging (Albany NY) 1:281–288

    CAS  Google Scholar 

  • Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E (2011) Epigenetic predictor of age. PLoS One 6:e14821

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Abramovich A, Cohen RM, Chalifa-Caspi V, Fraifeld VE (2007) Longevity network: construction and implications. Mech Ageing Dev 128:117–124

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ (2008) Hormesis and medicine. Br J Clin Pharmacol 66:594–617

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM et al (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222:122–128

    Article  PubMed  CAS  Google Scholar 

  • Carnes BA (2011) What is lifespan regulation and why does it exist? Biogerontology 12:367–374

    Article  PubMed  Google Scholar 

  • Csermely P (2006) Weak links. Berlin, Springer

    Google Scholar 

  • Das N, Levine RL, Orr WC, Sohal RS (2001) Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J 360:209–216

    Article  PubMed  CAS  Google Scholar 

  • Demirovic D, Rattan SIS (2011) Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro. Biogerontology. doi: 10.1007/s10522-011-9326-7

  • Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22:3236–3241

    Article  PubMed  CAS  Google Scholar 

  • Faragher RG (2009) What could advances in the biology of ageing mean for the quality of later life? Qual Ageing 10:30–38

    Article  Google Scholar 

  • Farrelly C (2010) Framing the inborn aging process and longevity science. Biogerontology 11:377–385

    Article  PubMed  Google Scholar 

  • Franceschi C, Valensin S, Bonafè M, Paolisso G, Yashin AI, Monti D, De Benedictis G (2000) The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35:879–896

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Taguchi T, Ohashi M (1999) Age-dependent changes in DNA polymerase fidelity and proofreading activity during cellular aging. Mech Ageing Dev 109:141–151

    Article  PubMed  CAS  Google Scholar 

  • Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: Is the oxidative damage theory of aging wrong? Cell Cycle 8:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Gruber J, Schaffer S, Halliwell B (2008) The mitochondrial free radical theory of ageing—Where do we stand? Front Biosci 13:6554–6579

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46:531–542

    Article  PubMed  CAS  Google Scholar 

  • Harman D (2006) Free radical theory of aging: an update. Ann NY Acad Sci 1067:10–21

    Article  PubMed  CAS  Google Scholar 

  • Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10:773–781

    Google Scholar 

  • Hayes DP (2007) Nutritional hormesis. Eur J Clin Nutr 61:147–159

    Article  PubMed  CAS  Google Scholar 

  • Hayes DP (2010) Vitamin D and ageing. Biogerontology 11:1–16

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann NY Acad Sci 1100:1–13

    Article  PubMed  CAS  Google Scholar 

  • Herskind AMMM, Holm NV, Sørensen TIA, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97:319–323

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss A (2003) Errors, mitochondrial dysfunction and ageing. Biogerontology 4:397–400

    Article  PubMed  CAS  Google Scholar 

  • Holbrook MA, Menninger JR (2002) Erythromycin slows aging of Saccharomyces cerevisiae. J Gerontol Biol Sci 57A:B29–B36

    Article  CAS  Google Scholar 

  • Holliday R (1996) The current status of the protein error theory of aging. Exp Gerontol 31:449–452

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (2005) Streptomycin, errors in mitochondria and ageing. Biogerontology 6:431–432

    Article  PubMed  Google Scholar 

  • Holliday R (2006) Aging is no longer an unsolved problem in biology. Ann NY Acad Sci 1067:1–9

    Article  PubMed  Google Scholar 

  • Holliday R (2007) Ageing: the paradox of life. Springer, Dordrecht

    Google Scholar 

  • Holliday R, Rattan SI (2010) Longevity mutants do not establish any “new science” of ageing. Biogerontology 11:507–511

    Article  PubMed  Google Scholar 

  • Howes RM (2006) The free radical fantasy: a panoply of paradoxes. Ann NY Acad Sci 1067:22–26

    Article  PubMed  CAS  Google Scholar 

  • Kahn A, Fraga MF (2009) Epigenetics and aging: status, challenges, and needs for the future. J Gerontol A Biol Sci Med Sci 64:195–198

    Article  PubMed  Google Scholar 

  • Keaney M, Gems D (2003) No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Rad Biol Med 34:277–282

    Article  PubMed  CAS  Google Scholar 

  • Keany M, Matthijssens F, Sharpe M, Vanfleteren J, Gems D (2004) Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free Rad Biol Med 37:239–250

    Article  Google Scholar 

  • Kowald A, Kirkwood TBL (1993a) Accuracy of tRNA charging and codon: anticodon recognition; relative importance for cellular stability. J Theor Biol 160:493–508

    Article  PubMed  CAS  Google Scholar 

  • Kowald A, Kirkwood TBL (1993b) Mitochondrial mutations, cellular instability and ageing: modelling the population dynamics of mitochondria. Mutat Res 295:93–103

    PubMed  CAS  Google Scholar 

  • Kueper T, Grune T, Prahl S, Lenz H et al (2007) Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J Biol Chem 282:23427–23436

    Article  PubMed  CAS  Google Scholar 

  • Le Bourg E (2005) Antioxidants and aging in human beings. In: Rattan SIS (ed) Aging interventions and therapies. World Scientific Publishers, Singapore, pp 85–107

    Chapter  Google Scholar 

  • Le Bourg E, Fournier D (2004) Is lifespan extension accompanied by improved antioxidant defences? A study of superoxide dismutase and catalase in Drosophila melanogaster flies that lived in hypergravity at young age. Biogerontology 5:261–264

    Article  PubMed  CAS  Google Scholar 

  • Le Bourg E, Rattan SIS (eds) (2008) Mild stress and healthy aging: applying hormesis in aging research and interventions. Springer, Dordrecht

    Google Scholar 

  • Lima CF, Pereira-Wilson C, Rattan SI (2011) Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Mol Nutr Food Res 55:430–442

    Article  PubMed  CAS  Google Scholar 

  • Nyström T (2002a) Aging in bacteria. Curr Opin Microbiol 5:596–601

    Article  PubMed  Google Scholar 

  • Nyström T (2002b) Translational fidelity, protein oxidation, and senescence: lessons from bacteria. Ageing Res Rev 1:693–703

    Article  PubMed  Google Scholar 

  • Olshansky SJ, Biggs S, Achenbaum WA, Davison GC et al (2011) The global agenda council on the ageing society: policy principles. Global Policy 2:97–105

    Article  Google Scholar 

  • Partridge B, Lucke JC, Bartlett HP, Hall WD (2009) Ethical, social, and personal implications of extended human lifespan identified by members of the public. Rejuven Res 12:351–357

    Article  Google Scholar 

  • Perez VI, Buffenstein R, Masamsetti V, Leonard S et al (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA 106:3059–3064

    Article  PubMed  CAS  Google Scholar 

  • Pun PB, Gruber J, Tang SY, Schaffer S, Ong RL, Fong S, Ng LF, Cheah I, Halliwell B (2010) Ageing in nematodes: Do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 11:17–30

    Article  PubMed  Google Scholar 

  • Rattan SIS (1985) Beyond the present crisis in gerontology. BioEssays 2:226–228

    Article  Google Scholar 

  • Rattan SIS (1995) Gerontogenes: Real or virtual? FASEB J 9:284–286

    PubMed  CAS  Google Scholar 

  • Rattan SIS (1996) Synthesis, modifications and turnover of proteins during aging. Exp Gerontol 31:33–47

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2000a) Ageing, gerontogenes, and hormesis. Indian J Exp Biol 38:1–5

    PubMed  CAS  Google Scholar 

  • Rattan SIS (2000b) Biogerontology: the next step. Ann NY Acad Sci 908:282–290

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2003) Transcriptional and translational dysregulation during aging. In: von Zglinicki T (ed) Aging at the molecular level. Kluwer Academic Publisher, Dordrecht, pp 179–191

    Google Scholar 

  • Rattan SIS (2004) Aging, anti-aging, and hormesis. Mech Age Dev 125:285–289

    Article  CAS  Google Scholar 

  • Rattan SIS (2005) Anti-ageing strategies: Prevention or therapy? EMBO Reports 6:S25–S29

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2006) Theories of biological aging: genes, proteins and free radicals. Free Rad Res 40:1230–1238

    Article  CAS  Google Scholar 

  • Rattan SIS (2007a) Homeostasis, homeodynamics, and aging. In: Birren J (ed) Encyclopedia of Gerontology. Elsevier Inc., London, pp 696–699

  • Rattan SIS (2007b) The science of healthy aging: genes, milieu, and chance. Ann NY Acad Sci 1114:1–10

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2008a) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Rattan SIS (2008b) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389:267–272

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2010) Synthesis, modifications and turnover of proteins during aging. Adv Exp Med Biol 694:1–13

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS, Clark BFC (2005) Understanding and modulating ageing. IUBMB Life 57:297–304

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS, Demirovic D (2009) Hormesis and aging. In: Mattson MP, Calabrese E (eds) Hormesis: a revolution in biology toxicology and medicine. Springer, New York, pp 153–175

    Google Scholar 

  • Rattan SIS, Demirovic D (2010a) Hormesis as a mechanism for the anti-aging effects of calorie restriction. In: Everitte AV, Rattan SIS, Le Couteur DG, de Cabo R (eds) Calorie restriction aging and longevity. Springer, Dordrecht, pp 233–245

    Chapter  Google Scholar 

  • Rattan SIS, Demirovic D (2010b) Hormesis can and does work in humans. Dose Response 8:58–63

    Article  Google Scholar 

  • Rattan SIS, Singh R (2009) Gene therapy in aging. Gene Ther 16:3–9

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Stefanatos RKA (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1:10–21

    Article  PubMed  CAS  Google Scholar 

  • Schaffer S, Gruber J, Ng LF, Fong S, Wong YT, Tang SY, Halliwell B (2011) The effect of dichloroacetate on health and lifespan in C. elegans. Biogerontology 12:195–209

    Article  PubMed  CAS  Google Scholar 

  • Seppet E, Paasuke M, Conte M, Capri M, Franceschi C (2011) Ethical aspects of aging research. Biogerontology (Epub ahead of print)

  • Silar P, Picard M (1994) Increased longevity of EF-1a high-fidelity mutants in Podospora anserina. J Mol Biol 235:231–236

    Article  PubMed  CAS  Google Scholar 

  • Silar P, Rossignol M, Haedens V, Derhy Z, Mazabraud A (2000) Deletion and dosage modulation of the eEF1A gene in Podospora anserina: effect on the life cycle. Biogerontology 1:47–54

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kølvraa S, Rattan SIS (2007) Genetics of longevity with emphasis on the relevance of HSP70 genes. Front Biosci 12:4504–4513

    Article  PubMed  CAS  Google Scholar 

  • Sitte N, von Zglinicki T (2003) Free radical production and antioxidant defense: a primer. In: von Zglinicki T (ed) Aging at the molecular level. Kluwer Acad Publ, Dordrecht, pp 1–10

    Google Scholar 

  • Southam CM, Ehrlich J (1943) Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517–524

    Google Scholar 

  • Srivastava VK, Busbee DL (2002) Replicative enzymes and ageing: importance of DNA polymerase alpha function to the events of cellular ageing. Ageing Res Rev 1:443–463

    Article  PubMed  CAS  Google Scholar 

  • Srivastava VK, Miller S, Schroeder M, Crouch E, Busbee D (2000) Activity of DNA polymerase alpha in aging human fibroblasts. Biogerontology 1:201–216

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  • Szalay MS, Kovacs IA, Korcsmaros T, Bode C, Csermely P (2007) Stress-induced rearrangements of cellular networks: consequences for protection and drug design. FEBS Lett 581:3675–3680

    Article  PubMed  CAS  Google Scholar 

  • Tacutu R, Budovsky A, Fraifeld VE (2010) The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology 11:513–522

    Article  PubMed  CAS  Google Scholar 

  • Tieri P, Valensin S, Latora V, Castellani GC, Marchiori M, Remondini D, Franceschi C (2005) Quantifying the relevance of different mediators in the human immune cell network. Bioinformatics 21:1639–1643

    Article  PubMed  CAS  Google Scholar 

  • Underwood M, Bartlett HP, Hall WD (2009) Professional and personal attitudes of researchers in ageing towards life extension. Biogerontology 10:73–81

    Article  PubMed  Google Scholar 

  • Wiegant FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA (2009) Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 10:27–42

    Article  PubMed  CAS  Google Scholar 

  • Wilson DL (2009) Slowing human ageing. Qual Ageing 10:23–29

    Article  Google Scholar 

  • Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94:11168–11172

    Article  PubMed  CAS  Google Scholar 

  • Yates FE (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comput Model 19:49–74

    Article  Google Scholar 

Download references

Acknowledgments

I take this opportunity to express my long overdue thanks to my mentors, Suraj P. Sharma, Sivatosh Mookerjee, Robin Holliday and Brian Clark; and to my students from all around the world who let me grow, mature and age gracefully as a biogerontologist. My special thanks to Ms Brahmjot Kaur for making the homeodynamics illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh I. S. Rattan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattan, S.I.S. Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011. Biogerontology 13, 83–91 (2012). https://doi.org/10.1007/s10522-011-9354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9354-3

Keywords

Navigation