Skip to main content
Log in

Longevity mutants do not establish any “new science” of ageing

  • Opinion
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The biological reasons for ageing are now well known, so it is no longer an unsolved problem in biology. Furthermore, there is only one science of ageing, which is continually advancing. The significance and importance of the mutations that lengthen the lifespan of invertebrates can be assessed only in relationship to previous well-established studies of ageing. The mutant strains of model organisms that increase longevity have altered nutrient signalling pathways similar to the effects of dietary restriction, and so it is likely that there is a shift in the trade-off between reproduction and maintenance of the soma. To believe that the isolation and characterisation of a few invertebrate mutations (as well as those in yeast) will “galvanise” the field and provide new insights into human ageing is an extreme point of view which does not recognize the huge progress in ageing research that has been made in the last 50 years or so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen J, Senturk D, Wang JL, Müller HG, Carey JR, Caswell H, Caswell-Chen EP (2007) A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans. J Gerontol Bio Sci 62A:126–135

    Google Scholar 

  • Curran SP, Ruvkan G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    Article  PubMed  Google Scholar 

  • Economos AC, Lints FA (1985) Growth rate, life span in Drosophila. V. The effect of prolongation of the period of growth on the total duration of life (J.H. Northrop, 1917). revisited. Mech Ageing Develop 33:103–113

    Article  CAS  Google Scholar 

  • Economos AC, Lints FA (1986) Developmental temperature and lifespan in Drosophila melanogaster. I. Constant developmental temperature: evidence for physiological adaptation in a wide temperature range. Gerontol 32:18–27

    Article  CAS  Google Scholar 

  • Everitt AV, Rattan SIS, Le Couteur DG, de Cabo C (eds) (2010) Calorie restriction, aging and longevity. Springer, New York

    Google Scholar 

  • Finch CE (2009) Update on slow aging and negligible senescence–a mini-review. Gerontology 55:307–313

    Article  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328:321–326

    Article  CAS  PubMed  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    CAS  PubMed  Google Scholar 

  • Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann NY Acad Sci 1100:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hipkiss A (2008) Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology 9:49–55

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1989) Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays 10:125–127

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1995) Understanding ageing. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Holliday R (2006) Aging is no longer an unsolved problem in biology. Ann NY Acad Sci 1067:1–9

    Article  PubMed  Google Scholar 

  • Ishii N, Suzuki N, Hartman PS, Suzuki K (1994) The effects of temperature on the longevity of a radiation-sensitive mutant rad-8 of the nematode Caenorhabditis elegans. J Gerontol 49:B117–B120

    CAS  PubMed  Google Scholar 

  • Johnson TE (1990) Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249:908–912

    Article  CAS  PubMed  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB, Shanley DP (2005) Food restricticon, evolution and ageing. Mech Ageing Dev 126:1011–1016

    Article  PubMed  Google Scholar 

  • Le Bourg E, Rattan SIS (2006) Special issue: can dietary restriction increase longevity in all species, particularly in human beings? Introduction to a debate among experts. Biogerontology 7:123–125

    Article  PubMed  Google Scholar 

  • Longo VD (2009) Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44:70–74

    Article  CAS  PubMed  Google Scholar 

  • Luckinbill LS (1998) Selection for longevity confers resistance to low-temperature stress in Drosophila melanogster. J Gerontol Biol Sci 53A:B147–B153

    Google Scholar 

  • Norry FM, Loeschcke V (2002) Temperature-induced shifts in associations of longevity with body size in Drosophila melanogster. Evolution 56:299–306

    PubMed  Google Scholar 

  • North BJ, Sinclair DA (2007) Sirtuins: a conserved key unlocking AceCS activity. Trends Biochem Sci 32:1–4

    Article  CAS  PubMed  Google Scholar 

  • Olsen A, Vantipalli MC, Lithgow GJ (2006) Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans. Science 312:1381–1385

    Article  CAS  PubMed  Google Scholar 

  • Olshansky SJ, Rattan SIS (2005) At the heart of aging: is it metabolic rate or stability? Biogerontology 6:291–295

    Article  PubMed  Google Scholar 

  • Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555

    Article  CAS  PubMed  Google Scholar 

  • Partridge L (2010) The new biology of ageing. Philos Trans R Soc Lond B Biol Sci 365:147–154

    Article  PubMed  Google Scholar 

  • Rattan SIS (2005) Anti-ageing strategies: prevention or therapy? EMBO Reports 6:S25–S29

    Article  CAS  PubMed  Google Scholar 

  • Rattan SIS (2006) Theories of biological aging: genes, proteins and free radicals. Free Rad Res 40:1230–1238

    Article  CAS  Google Scholar 

  • Rattan SIS (2007) Homeostasis, homeodynamics, and aging. In: Birren J (ed) Encyclopedia of gerontology. Elsevier Inc, UK, pp 696–699

    Google Scholar 

  • Rattan SIS (2008a) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Rattan SIS (2008b) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389:267–272

    Article  CAS  PubMed  Google Scholar 

  • Rattan SIS, Singh R (2009) Gene therapy in aging. Gene Ther 16:3–9

    Article  CAS  PubMed  Google Scholar 

  • Rincon M, Muzumdar R, Altmon G, Barzilai N (2004) The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Age Dev 125:397–403

    Article  CAS  Google Scholar 

  • Rose MR (1991) Evolutionary biology of aging. Oxford University Press, New York

    Google Scholar 

  • Schriner SE, Linford NJ (2006) Extension of mouse lifespan by overexpression of catalase. Age 28:209–218

    Article  CAS  PubMed  Google Scholar 

  • Shanley DP, Kirkwood TB (2006) Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology 7:165–168

    Article  PubMed  Google Scholar 

  • Turturro A, Hart RW (1991) Longevity assurance mechanisms and calorie restriction. Ann NY Acad Sci 621:363–372

    Article  CAS  PubMed  Google Scholar 

  • Unger RH (2006) Klotho-induced insulin resistance: a blessing in disguise? Nat Med 12:56–57

    Article  CAS  PubMed  Google Scholar 

  • Van Voorhies WA, Curtsinger JW, Rose MR (2006) Do longevity mutants always show trade-offs? Exp Gerontol 41:1055–1058

    Article  PubMed  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Yashin AI, De Benedictis G et al (2000) Genes and longevity: lessons from studies of centenarians. J Gerontol Biol Sci 55A:B319–B328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh I. S. Rattan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holliday, R., Rattan, S.I.S. Longevity mutants do not establish any “new science” of ageing. Biogerontology 11, 507–511 (2010). https://doi.org/10.1007/s10522-010-9288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-010-9288-1

Keywords

Navigation