Skip to main content
Log in

The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes

  • Methods
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Hundreds of genes and miRNAs have been identified as being involved in the determination of longevity, aging patterns and in the development of age-related diseases (ARDs). The interplay between these genes as well as the role of miRNAs in the context of protein–protein interaction networks has as yet been poorly addressed. This work was undertaken in order to integrate the data accumulated in the field, from a network-based perspective. The results are organized in the NetAge database—an online database and network analysis tools for biogerontological research (http://www.netage-project.org). The NetAge database contains gene sets and miRNA-regulated PPI networks for longevity, ARDs and aging-associated processes, and also common signatures (overlapping networks). The database is available through the NetAge website, which provides the necessary bioinformatics tools for searching and browsing the networks, as well as showing network info and statistics. By making these resources available online, we hope to provide the scientific community with a new, network-oriented platform for biogerontological research, and encourage greater participation in the systems biology of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARDs:

Age-related diseases

AD:

Alzheimer’s disease

CGS:

Common gene signature

HLN:

Human longevity network

LAGs:

Longevity-associated genes

miRNA:

Micro RNA

PPI:

Protein–protein interaction

YABNA:

Yet another biological networks analyzer

References

  • Agrawal S, Dimitrova N, Nathan P, Udayakumar K, Lakshmi SS, Sriram S, Manjusha N, Sengupta U (2008) T2D-Db: an integrated platform to study the molecular basis of Type 2 diabetes. BMC Genomics 9:320

    Article  PubMed  CAS  Google Scholar 

  • Ashford JW, Atwood CS, Blass JP, Bowen RL, Finch CE, Iqbal K, Joseph JA, Perry G (2005) What is aging? What is its role in Alzheimer’s disease? What can we do about it? J Alzheimers Dis 7:247–253

    PubMed  Google Scholar 

  • Berglund AC, Sjolund E, Ostlund G, Sonnhammer EL (2008) InParanoid 6: eukaryotic ortholog clusters with in paralogs. Nucleic Acids Res 36:D263–D266

    Article  PubMed  CAS  Google Scholar 

  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    Article  PubMed  CAS  Google Scholar 

  • Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V, Dolinski K, Tyers M (2008) The BioGRID interaction database: 2008 update. Nucleic Acids Res 36:D637–D640

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Muradian KK, Fraifeld VE (2006) From disease-oriented to aging/longevity-oriented studies. Rejuvenation Res 9:207–210

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Abramovich A, Cohen R, Chalifa-Caspi V, Fraifeld V (2007) Longevity network: construction and implications. Mech Ageing Dev 128:117–124

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V (2009) Common gene signature of cancer and longevity. Mech Ageing Dev 130:33–39

    Article  PubMed  CAS  Google Scholar 

  • Chautard E, Ballut L, Thierry-Mieg N, Ricard-Blum S (2009) MatrixDB, a database focused on extracellular protein–protein and protein–carbohydrate interactions. Bioinformatics 25:690–691

    Article  PubMed  CAS  Google Scholar 

  • Chautard E, Thierry-Mieg N, Ricard-Blum S (2010) Interaction networks as tools to investigate the mechanisms of aging. Biogerontology. doi:10.1007/s10522-010-9268-5

  • Csermely P, Soti C (2006) Cellular networks and the aging process. Arch Physiol Biochem 112:60–64

    Article  PubMed  CAS  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    Article  PubMed  CAS  Google Scholar 

  • de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM (2009) The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8:65–72

    Article  PubMed  CAS  Google Scholar 

  • Eyre TA, Ducluzeau F, Sneddon TP, Povey S, Bruford EA, Lush MJ (2006) The HUGO gene nomenclature database, 2006 updates. Nucleic Acids Res 34:D319–D321

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2008) Epigenetics at the epicenter of modern medicine. JAMA 299:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Ferrarini L, Bertelli L, Feala J, McCulloch AD, Paternostro G (2005) A more efficient search strategy for aging genes based on connectivity. Bioinformatics 21:338–348

    Article  PubMed  CAS  Google Scholar 

  • Finch CE, Marchalonis JJ (1996) Evolutionary perspectives on amyloid and inflammatory features of Alzheimer disease. Neurobiol Aging 17:809–815

    Article  PubMed  CAS  Google Scholar 

  • Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435–462

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    Article  PubMed  CAS  Google Scholar 

  • Hong EL, Balakrishnan R, Dong Q, Christie KR, Park J, Binkley G, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Krieger CJ, Livstone MS, Miyasato SR, Nash RS, Oughtred R, Skrzypek MS, Weng S, Wong ED, Zhu KK, Dolinski K, Botstein D, Cherry JM (2008) Gene ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res 36:D577–D581

    Article  PubMed  CAS  Google Scholar 

  • Hsu CW, Juan HF, Huang HC (2008) Characterization of microRNA-regulated protein–protein interaction network. Proteomics 8:1975–1979

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652

    Article  PubMed  CAS  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    Article  PubMed  CAS  Google Scholar 

  • Lee SS (2006) Whole genome RNAi screens for increased longevity: important new insights but not the whole story. Exp Gerontol 41:968–973

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Li WH (2007) MicroRNA regulation of human protein protein interaction network. RNA 13:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Liang R, Bates DJ, Wang E (2009) Epigenetic control of microRNA expression and aging. Curr Genomics 10:184–193

    Article  PubMed  CAS  Google Scholar 

  • Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 28:1410–1420

    Article  PubMed  CAS  Google Scholar 

  • Pan F, Chiu CH, Pulapura S, Mehan MR, Nunez-Iglesias J, Zhang K, Kamath K, Waterman MS, Finch CE, Zhou XJ (2007) Gene aging nexus: a web database and data mining platform for microarray data on aging. Nucleic Acids Res 35:D756–D759

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37:D155–D158

    Article  PubMed  CAS  Google Scholar 

  • Promislow DE (2004) Protein networks, pleiotropy and the evolution of senescence. Proc Biol Sci 271:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI, Singh R (2009) Progress & prospects: gene therapy in aging. Gene Ther 16:3–9

    Article  PubMed  CAS  Google Scholar 

  • Reddy VP, Zhu X, Perry G, Smith MA (2009) Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis 16:763–774

    PubMed  Google Scholar 

  • Rogers A, Antoshechkin I, Bieri T, Blasiar D, Bastiani C, Canaran P, Chan J, Chen WJ, Davis P, Fernandes J, Fiedler TJ, Han M, Harris TW, Kishore R, Lee R, McKay S, Muller HM, Nakamura C, Ozersky P, Petcherski A, Schindelman G, Schwarz EM, Spooner W, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Yook K, Durbin R, Stein LD, Spieth J, Sternberg PW (2008) WormBase 2007. Nucleic Acids Res 36:D612–D617

    Article  PubMed  CAS  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:D5–D15

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Simko GI, Gyurko D, Veres DV, Nanasi T, Csermely P (2009) Network strategies to understand the aging process and help age-related drug design. Genome Med 1:90

    Article  PubMed  CAS  Google Scholar 

  • Strausberg RL, Buetow KH, Greenhut SF, Grouse LH, Schaefer CF (2002) The cancer genome anatomy project: online resources to reveal the molecular signatures of cancer. Cancer Investig 20:1038–1050

    Article  CAS  Google Scholar 

  • Tacutu R, Budovsky A, Wolfson M, Fraifeld V (2010) MicroRNA-regulated protein–protein interaction networks: how could they help in searching for pro-longevity targets? Rejuvenation Res 13(2). doi:10.1089/rej.2009.0980

  • Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang H (2009) FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res 37:D555–D559

    Article  PubMed  CAS  Google Scholar 

  • Wang E (2007) MicroRNA, the putative molecular control for mid-life decline. Ageing Res Rev 6:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang S, Wang Y, Chen L, Zhang XS (2009) Disease-aging network reveals significant roles of aging genes in connecting genetic diseases. PLoS Comput Biol 5:e1000521

    Article  PubMed  CAS  Google Scholar 

  • Wolfson M, Tacutu R, Budovsky A, Aizenberg N, Fraifeld V (2008) MicroRNAs: relevance to aging and age-related diseases. Open Longev Sci 2:66–75. doi:10.2174/1876326X00802010066

    Article  CAS  Google Scholar 

  • Wolfson M, Budovsky A, Tacutu R, Fraifeld V (2009) The signaling hubs at the crossroad of longevity and age-related disease networks. Int J Biochem Cell Biol 41:516–520

    Article  PubMed  CAS  Google Scholar 

  • Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JD (2007) A modular network model of aging. Mol Syst Biol 3:147

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Fu LM (2003) TSGDB: a database system for tumor suppressor genes. Bioinformatics 19:2311–2312

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Lu M, Shi L, Rui W, Zhu X, Chen G, Shang T, Tang J (2004) Cardio: a web-based knowledge resource of genes and proteins related to cardiovascular disease. Int J Cardiol 97:245–249

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all the members from the Lab for the Biology of Aging and from the Lab of Molecular Biology of the Cell for their contribution, insightful suggestions and helpful comments. This work was supported by the European Union FP7 Health Research Grant number HEALTH-F4-2008-202047 (to V.F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim E. Fraifeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tacutu, R., Budovsky, A. & Fraifeld, V.E. The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology 11, 513–522 (2010). https://doi.org/10.1007/s10522-010-9265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-010-9265-8

Keywords

Navigation