Skip to main content

Advertisement

Log in

Vitamin D and ageing

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Within the past three to four decades a revolution has occurred in our understanding of vitamin D and its effects. Sundry laboratory and epidemiologic studies have revealed that the active metabolite of vitamin D controls and/or ameliorates various pathologies. As presented here, there is substantive evidence that vitamin D may play a positive and important role in the ageing process. This evidence arises from detailed consideration of various biological mechanisms and processes by which vitamin D operates as well as specific examples of its exerting control/amelioration of various human maladies which contribute to ageing. Arguments are advanced that vitamin D appears to play a major positive role in biogerontology by reducing susceptibility in the elderly to chronic degenerative diseases. It is strongly recommended that the positive role of vitamin D in ageing be taken into account by gerontologists and biogerontology researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abete P, Calabrese E, Ji LL et al (2008) Mild stress and healthy aging: perspectives for human beings. In: Le Bourg E, Rattan SIS (eds) Mild stress and healthy aging. Springer, Berlin, pp 171–183

    Google Scholar 

  • Adams JS, Liu PT, Chun R et al (2007) Vitamin D in defense of the human immune response. Ann N Y Acad Sci 1117:94–105

    PubMed  CAS  Google Scholar 

  • Andjelkovic Z, Vojinovic J, Pejnovic N et al (1999) Disease modifying and immunomodulatory effects of high dose of 1α(OH) D3 in rheumatoid arthritis patients. Clin Exp Rheumatol 17:453–456

    PubMed  CAS  Google Scholar 

  • Armas LA, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89:5387–5391

    PubMed  CAS  Google Scholar 

  • Aubin JE, Heersche JNM (1997) Vitamin D and osteoblasts. In: Feldman D, Glorieux FH, Pike JW (eds) Vitamin D. Academic Press, San Diego, pp 313–328

    Google Scholar 

  • Autier P, Gandini S (2007) Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 167:1730–1737

    PubMed  CAS  Google Scholar 

  • Banerjee P, Chatterjee M (2003) Antiproliferative role of vitamin D and its analogs—a brief review. Mol Cell Biochem 253:247–254

    PubMed  CAS  Google Scholar 

  • Bao B-Y, Ting H-J, Hsu J-W et al (2008) Protective role of 1α, 25-dihydroxyvitamin D3 against sensitive oxidative stress in nonmalignant human prostate epithelial cells. Int J Cancer 122:2699–2706

    PubMed  CAS  Google Scholar 

  • Bernardi RJ, Johnson CS, Modzelewski RA et al (2002) Antiproliferative effects of 1α, 25-dihydroxyvitamin D3 and vitamin D analogs on tumor-derived endothelial cells. Endocrinology 143:2508–2514

    PubMed  CAS  Google Scholar 

  • Blum M, Dolnikowski G, Seyoum D et al (2008) Vitamin D3 in fat tissue. Endocrine 33:90–94

    PubMed  CAS  Google Scholar 

  • Bouillon R, Okamura WH, Norman AW (1995) Structure-function relationships in the vitamin D endocrine system. Endocrin Rev 16:200–257

    CAS  Google Scholar 

  • Bursch W, Ellinger A (2005) Autophagy—a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol 43:297–310

    PubMed  CAS  Google Scholar 

  • Bursch W, Ellinger A, Gerner CH et al (2000) Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926:1–12

    PubMed  CAS  Google Scholar 

  • Cannell JJ, Vieth R, Umhau JC et al (2006) Epidemic influenza and vitamin D. Epidemiol Infect 134:1129–1140

    PubMed  CAS  Google Scholar 

  • Cannell JJ, Hollis BW, Zasloff M et al (2008) Diagnosis and treatment of vitamin D deficiency. Expert Opin Pharmacother 9:107–118

    PubMed  CAS  Google Scholar 

  • Cantorna MT (2006) Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog Biophys Mol Biol 92:60–64

    PubMed  CAS  Google Scholar 

  • Cantorna MT, Mahon BM (2004) Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med (Maywood) 229:1136–1142

    CAS  Google Scholar 

  • Cantorna MT, Zhu Y, Froicu M et al (2004) Vitamin D status, 1, 25-dihydroxyviatmin D3, and the immune system. Am J Clin Nutr 80(6 Suppl):1717S–1720S

    PubMed  CAS  Google Scholar 

  • Capri M, Monti D, Salvioli S et al (2006) Complexity of anti-immunosenescence strategies in humans. Artif Organs 30:730–742

    PubMed  CAS  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    PubMed  CAS  Google Scholar 

  • Chatterjee M (2001) Vitamin D and genomic stability. Mutat Res 475:69–87

    PubMed  CAS  Google Scholar 

  • Chen K-B, Lin AM-Y, Chiu T-S (2003) Systematic vitamin D3 attenuated oxidative injuries in the locus coeruleus of rat brain. Ann N Y Acad Sci 993:313–324

    PubMed  CAS  Google Scholar 

  • Chuck A, Todd J, Diffey B (2001) Subliminal ultraviolet-B irradiation for the prevention of vitamin D deficiency in the elderly: a feasibility study. Photodermatol Photoimmunol Photomed 17:168–171

    PubMed  CAS  Google Scholar 

  • Clairmont A, Tessman D, Stock A et al (1996) Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear vitamin D receptor. Carcinogenesis 17:1389–1391

    PubMed  CAS  Google Scholar 

  • Danielsson C, Mathiasen IS, James SY et al (1997) Sensitive induction of apoptosis by a novel 1, 25-dihydroxyvitamin D3 analogue shows relation to promoter selectivity. J Cell Biochem 66:552–562

    PubMed  CAS  Google Scholar 

  • Davis CD (2008) Vitamin D and cancer: current dilemmas and future research needs. Am J Clin Nutr 88:565S–569S

    PubMed  CAS  Google Scholar 

  • Dawson-Hughes B (2008) Serum 25-hydroxyvitain D and functional outcomes in the elderly. Am J Clin Nutr 88:537S–540S

    PubMed  CAS  Google Scholar 

  • Deeb KK, Trump DL, Johnson CS (2007) Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7:684–700

    PubMed  CAS  Google Scholar 

  • DeLuca HF (1997) Historical overview. In: Feldman D, Glorieux FH, Pike JW (eds) Vitamin D. Academic Press, San Diego, pp 3–12

    Google Scholar 

  • DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S–1696S

    PubMed  CAS  Google Scholar 

  • DeLuca HF, Cantorna MT (2001) Vitamin D: its role and uses in immunology. FASEB J 15:2579–2585

    PubMed  CAS  Google Scholar 

  • DeLuca HF, Zierold C (1998) Mechanisms and functions of vitamin D. Nutr Rev 56(2 Pt 2):S4–S10

    PubMed  CAS  Google Scholar 

  • Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol Renal Physiol 289:F8–F28

    PubMed  CAS  Google Scholar 

  • Feldman D, Glorieux FH, Pike JW (eds) (1997) Vitamin D. Academic Press, San Diego

    Google Scholar 

  • Fernandez-Garcia NI, Palmer HG, Garcia M et al (2005) 1α, 25-Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene 24:6533–6544

    PubMed  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1:27–31

    PubMed  CAS  Google Scholar 

  • Franceschi C, Monti D, Scarfi MR et al (1992) Genomic instability and aging. Studies in centenarians (successful aging) and in patients with Down’s syndrome (accelerated aging). Ann N Y Acad Sci 663:4–16

    PubMed  CAS  Google Scholar 

  • Friedman DS, O’Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Opthalmol 122:564–572

    Google Scholar 

  • Froicu M, Cantorna MT (2007) Vitamin D and vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol 8:5

    PubMed  Google Scholar 

  • Fujioka T, Suzuki Y, Okamoto T et al (2000) Prevention of renal cell carcinoma by active vitamin D. World J Surg 24:1205–1210

    PubMed  CAS  Google Scholar 

  • Fujita H, Sugimoto K, Inatomi S et al (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921

    PubMed  CAS  Google Scholar 

  • Garcion E, Wion-Barbot N, Montero-Menei CN et al (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13:100–105

    PubMed  CAS  Google Scholar 

  • Gewirtz DA (2007) Autophagy as a mechanism of radiation sensitization in breast tumor cells. Autophagy 3:249–250

    PubMed  CAS  Google Scholar 

  • Griffin MD, Lutz WH, Phan VA et al (2000) Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 270:701–708

    PubMed  CAS  Google Scholar 

  • Halloran BP, Portale AA (1997) Vitamin D metabolism: the effects of aging. In: Feldman D, Glorieux FH, Pike JW (eds) Vitamin D. Academic Press, San Diego, pp 541–554

    Google Scholar 

  • Hampton MB, Orrenius S (1998) Redox regulation of apoptotic cell death in the immune system. Toxicol Lett 102–103:355–358

    PubMed  Google Scholar 

  • Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21

    PubMed  CAS  Google Scholar 

  • Hayes DP (2007) Nutritional hormesis. Eur J Clin Nutr 61:147–159

    PubMed  CAS  Google Scholar 

  • Hayes DP (2008a) The protection afforded by vitamin D against low radiation damage. Int J Low Radiat 5:368–394

    CAS  Google Scholar 

  • Hayes DP (2008b) Adverse effects of nutritional inadequacy and excess: a hormetic model. Am J Clin Nutr 88:578S–581S

    PubMed  CAS  Google Scholar 

  • Higami Y, Shimokawa I (2000) Apoptosis in the aging process. Cell Tissue Res 301:125–132

    PubMed  CAS  Google Scholar 

  • Holick MF (1995) Noncalcemic actions of 1, 25-dihydroxyvitamin D3 and clinical applications. Bone 17(2 Suppl):107S–111S

    PubMed  CAS  Google Scholar 

  • Holick MF (ed) (1999) Vitamin D: physiology, molecular biology, and clinical applications. Humana, Totowa

    Google Scholar 

  • Holick MF (2006) High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81:353–373

    PubMed  CAS  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    PubMed  CAS  Google Scholar 

  • Hosseinpour F, Wikvall K (2000) Porcine microsomal vitamin D3 25-hydroxylase (CYP2D25). Catalytic properties, tissue distribution, and comparison with human CYP2D6. J Biol Chem 275:34650–34655

    PubMed  CAS  Google Scholar 

  • Houghton LA, Vieth R (2006) The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr 84:694–697

    PubMed  CAS  Google Scholar 

  • Hoyer-Hansen M, Jaattela M (2007) AMP-activated protein kinase: a universal regulator of autophagy. Autophagy 3:381–383

    PubMed  Google Scholar 

  • Hypponen E, Laara E, Reunanen A et al (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358:1500–15003

    PubMed  CAS  Google Scholar 

  • Ji LL (2008) Physical activity: a strong stimulant for hormesis during aging. In: Bourg EL, Rattan SIS (eds) Mild stress and healthy aging. Springer, Berlin, pp 97–114

    Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164

    PubMed  CAS  Google Scholar 

  • Lamprecht SA, Lipkin M (2003) Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3:601–614

    PubMed  CAS  Google Scholar 

  • Lappe JM, Travers-Gustafson D, Davies KM et al (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 85:1586–1591

    PubMed  CAS  Google Scholar 

  • Lin AM, Chen KB, Chao PL (2005) Antioxidative effect of vitamin D3 on zinc-induced oxidative stress in CNS. Ann N Y Acad Sci 1053:319–329

    PubMed  CAS  Google Scholar 

  • Linnane AW, Kios M, Vitetta L (2007) Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 8:445–467

    PubMed  CAS  Google Scholar 

  • Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    PubMed  CAS  Google Scholar 

  • Lips P (2007) Relative value of 25(OH)D and 1, 25(OH)2D measurements. J Bone Miner Res 22:1668–1671

    PubMed  CAS  Google Scholar 

  • Liu PT, Modlin RL (2008) Human macrophage host defense against Mycobacterium tuberculosis. Curr Opin Immun 20:371–376

    CAS  Google Scholar 

  • Llewellyn DJ, Langa K, Lang I (2009) Serum 25-hydroxyvitamin D concentration and cognitive impairment. J Geriatr Psychiatry Neurol 22:188–199

    Google Scholar 

  • Lockshin RA, Zakeri ZF (1990) Programmed cell death: new thoughts and relevance to aging. J Gerontol 45:B135–B140

    PubMed  CAS  Google Scholar 

  • Looker AS, Pfeiffer CM, Lacher DA et al (2008) Serum 25-hydroxyvitamin D status of the US population: 1988–1994 compared with 2000–2004. Am J Clin Nutr 88:1519–1527

    PubMed  CAS  Google Scholar 

  • MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D. J Clin Invest 76:1536–1538

    PubMed  CAS  Google Scholar 

  • Mahon BD, Gordon SA, Cruz J, Cosman F, Cantorna MT (2003) Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J Neuroimmunol 134:128–132

    PubMed  CAS  Google Scholar 

  • Mantell DJ, Owens PE, Bundred NJ et al (2000) 1α, 25-Dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ Res 87:214–220

    PubMed  CAS  Google Scholar 

  • Marshall TG (2008) Vitamin D discovery outpaces FDA decision making. Bioessays 30:173–182

    PubMed  CAS  Google Scholar 

  • Masuda S, Jones G (2006) Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol Cancer Ther 5:797–808

    PubMed  CAS  Google Scholar 

  • Mathew R, White E (2007) Why sick cells produce tumors: the protective role of autophagy. Autophagy 3:502–505

    PubMed  CAS  Google Scholar 

  • Mathiasen IS, Sergeev IN, Bastholm L et al (2002) Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J Biol Chem 277:30738–30745

    PubMed  CAS  Google Scholar 

  • Mathieu C, Adorini L (2002) The coming age of 1, 25-dihydroxyvitamin D3 analogs as immunomodulatory agents. Trends Mol Med 8:174–179

    PubMed  CAS  Google Scholar 

  • May E, Asadullah K, Zugel U (2004) Immunoregulation through 1, 25-dihydroxyvitamin D3 and its analogs. Curr Drug Targets Inflamm Allergy 3:377–393

    PubMed  CAS  Google Scholar 

  • Minghetti PP, Norman AW (1988) 1, 25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J 2:3043–3053

    PubMed  CAS  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumour suppressor p53 is a direct transcriptional activator of human bax gene. Cell 80:293–299

    PubMed  CAS  Google Scholar 

  • Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26:662–687

    PubMed  CAS  Google Scholar 

  • Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88:491S–499S

    Article  PubMed  CAS  Google Scholar 

  • Ofodile ON (2006) Cardiovascular disease could be contained based on currently available data!. Dose-Response 4:225–254

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Takahashi A, Ohnishi K (2002) Studies about space radiation promote new fields in radiation biology. J Radiat Res (Tokyo) 43(Suppl):S7–S12

    Google Scholar 

  • Omdahl J, May B (1997) The 25-hydroxyvitamin D 24-hydroxylase. In: Feldman D, Glorieux FH, Pike JW (eds) Vitamin D. Academic Press, San Diego, pp 69–85

    Google Scholar 

  • Oudshoorn C, Mattace-Raso FU, van der Velde N et al (2008) Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 5:539–543

    Google Scholar 

  • Overbergh L, Decallone B, Valckx D et al (2000) Identification and immune regulation of 25-hydroxyvitamin D-1-α-hydroxylase in murine macrophages. Clin Exp Immunol 120:139–146

    PubMed  CAS  Google Scholar 

  • Parekh N, Chappell RJ, Millen AE et al (2007) Association between vitamin D and age-related macular degeneration in the third National Health and Nutrition Examination Survey, 1988 through 1994. Arch Ophthalmol 125:661–669

    PubMed  CAS  Google Scholar 

  • Payne ME, Anderson JJB, Steffens DC (2008) Calcium and vitamin D intakes may be positively associated with brain lesions in depressed and nondepressed elders. Nutr Res 28:285–292

    PubMed  CAS  Google Scholar 

  • Penna G, Adorini L (2000) 1α25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411

    PubMed  CAS  Google Scholar 

  • Pepper M (1997) Manipulating angiogenesis. From basic science to the bedside. Arterioscler Thromb Vasc Biol 17:605–619

    PubMed  CAS  Google Scholar 

  • Pike JW (1985) Intracellular receptors mediate the biologic action of 1, 25-dihydroxyvitamin D3. Nutr Rev 43:161–168

    Article  PubMed  CAS  Google Scholar 

  • Prentice A (2008) Vitamin D deficiency: a global perspective. Nutr Rev 66(10 Suppl 2):S153–S164

    PubMed  Google Scholar 

  • Ravikumar B, Rubinsztein DC (2006) Role of autophagy in the clearance of mutant huntingtin: a step towards therapy? Mol Aspects Med 27:520–527

    PubMed  CAS  Google Scholar 

  • Regulska M, Leskiewicz M, Budziszewska B et al (2006) Involvement of P13-K in neuroprotective effects of 1, 25-dihydroxyvitamin D3 analogue—PRI-2191. Pharmacol Rep 58:900–907

    PubMed  CAS  Google Scholar 

  • Rieux-Laucat F, Le Deist F, Hivroz C et al (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349

    PubMed  CAS  Google Scholar 

  • Salganik RI (2001) The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 20(5 Suppl):4645–4728

    Google Scholar 

  • Schleithoff SS, Zittermann A, Tenderich G et al (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 83:754–759

    PubMed  CAS  Google Scholar 

  • Scragg R, Camargo CA Jr (2008) Frequency of leisure-time physical activity and serum 25-hydroxyvitamin D levels in the US population: results from the third National Health and Nutrition Examination Survey. Am J Epidemiol 168:577–586

    PubMed  Google Scholar 

  • Segal E, Zinnman H, Raz B et al (2004) Adherence to vitamin D supplementation in elderly patients after hip fracture. J Am Geriatr Soc 52:474–475

    PubMed  Google Scholar 

  • Seifried HE, McDonald SS, Anderson DE et al (2003) The antioxidant conundrum in cancer. Cancer Res 63:4295–4298

    PubMed  CAS  Google Scholar 

  • Sergeev IN (2005) Calcium signaling in cancer and vitamin D. J Steroid Biochem Mol Biol 97:145–151

    PubMed  CAS  Google Scholar 

  • Shigenga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    Google Scholar 

  • Slater AF, Nobel CS, Orrenius S (1995) The role of intracellular oxidants in apoptosis. Biochim Biophys Acta 1271:59–62

    PubMed  Google Scholar 

  • Smith SM, Gardner KK, Locke J et al (2009) Vitamin D intake to attain a desired serum 25-hydroxyvitamin D concentration. Am J Clin Nutr 89:1092–1098

    PubMed  CAS  Google Scholar 

  • Steel GG (2002) Basic clinical radiobiology. Oxford University Press, London/New York

    Google Scholar 

  • Stolzenberg-Solomon RZ (2009) Vitamin D and pancreatic cancer. Ann Epidemiol 19:89–95

    PubMed  Google Scholar 

  • Stolzenberg-Solomon RZ, Vieth R, Azad A et al (2006) A prospective nested case-control study of vitamin D status and pancreatic cancer risk in male smokers. Cancer Res 66:10213–10219

    PubMed  CAS  Google Scholar 

  • Stumpf WE (2006) The dose makes the medicine. Drug Discov Today 11:550–555

    PubMed  CAS  Google Scholar 

  • Stumpf WE, O’Brien LP (1987) 1, 25(OH)2 vitamin D3 sites of action in the brain. An autographic study. Histochemistry 87:393–406

    PubMed  CAS  Google Scholar 

  • Swerdlow S, Distelhorst CW (2007) Bcl-2 regulated calcium signals as common mediators of both apoptosis and autophagy. Dev Cell 12:178–179

    PubMed  CAS  Google Scholar 

  • Tan CY, Statham B, Marks R et al (1982) Skin thickness measurements by pulsed ultrasound: its reproducibility, validation, and variability. Br J Dermatol 106:657–666

    PubMed  CAS  Google Scholar 

  • Tavera-Mendoza L, Wang T-T, Lallemant B et al (2006) Convergence of vitamin D and retinoic acid signaling at a common response element. EMBO Rep 7:180–185

    PubMed  CAS  Google Scholar 

  • Tetich M, Leskiewicz M, Budziszewska B et al (2003) The third multidisciplinary conference on drug research, Pila 2002. Effects of 1alpha,25-dihydroxyvitamin D3 and some putative steroid neuroprotective agents on the hydrogen peroxide-induced damage in neuroblastoma-glioma hybrid NG108-15. Acta Pol Pharm 60:351–355

    PubMed  CAS  Google Scholar 

  • Tombal B, Denmeade SR, Gillis J-M et al (2002) A supramicromolar elevation of intracellular free calcium ([Ca2+]i) is consistently required to induce the execution phase of apoptosis. Cell Death Differ 9:561–573

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534

    PubMed  CAS  Google Scholar 

  • Tuohimaa P, Tenkanen L, Ahonen M et al (2004) Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries. Int J Cancer 108:104–108

    PubMed  CAS  Google Scholar 

  • Utiger RD (1998) The need for more vitamin D. N Engl J Med 338:828–829

    PubMed  CAS  Google Scholar 

  • van den Bemd G-JCM, Pols HAP, van Leeuwen JPTM (2000) Anti-tumor effects of 1, 25-dihydroxyvitamin D3 and vitamin D analogs. Curr Pharm Des 6:717–732

    PubMed  Google Scholar 

  • van Etten E, Mathieu C (2005) Immunoregulation by 1, 25-dihydroxyviatmin D3: basic concepts. J Steroid Biochem Biol 97:93–101

    Google Scholar 

  • Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69:842–856

    PubMed  CAS  Google Scholar 

  • Vieth R, Kimball S (2006) Vitamin D in congestive heart failure. Am J Clin Nutr 83:731–732

    PubMed  CAS  Google Scholar 

  • Walters MR (1992) Newly identified actions of the vitamin D endocrine system. Endocr Rev 13:719–764

    PubMed  CAS  Google Scholar 

  • Wang JY, Wu JN, Cherng TL et al (2001) Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 904:67–75

    PubMed  CAS  Google Scholar 

  • Wang T-T, Tavera-Mendoza LE, Laperriere D et al (2005) Large-scale in silico and microarray-based identification of direct 1, 25-dihydroxyvitamin D3 target genes. Mol Endocrinol 19:2685–2695

    PubMed  CAS  Google Scholar 

  • Wang TJ, Pencina MJ, Booth SL et al (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117:503–511

    PubMed  CAS  Google Scholar 

  • Warner HR (1999) Apoptosis: a two-edged sword in aging. Ann N Y Acad Sci 887:1–11

    PubMed  CAS  Google Scholar 

  • Warner HR, Hodes RJ, Pocinki K (1997) What does cell death have to do with aging? J Am Geriatr Soc 45:1140–1146

    PubMed  CAS  Google Scholar 

  • Wicherts IS, van Schoor NM, Boeke AJP et al (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065

    PubMed  CAS  Google Scholar 

  • Willson RL (1992) Free radical-induced biological damage and the critical roles of vitamin A, vitamin C, vitamin D and vitamin E and of copper, iron, selenium and zinc. J Nutr Sci Vitaminol (Tokyo). S-19-2:541–544

  • Yamasaki H (1990) Gap junctional intercellular communication and carcinogenesis. Carcinogenesis 11:1051–1058

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Naus CC (1996) Role of connexin genes in growth control. Carcinogenesis 17:1199–1213

    PubMed  CAS  Google Scholar 

  • Yetley EA (2008) Assessing the vitamin D status of the US population. Am J Clin Nutr 88:558S–564S

    PubMed  CAS  Google Scholar 

  • Ylikomi T, Laaksi I, Lou Y-R et al (2002) Antiproliferative action of vitamin D. Vitam Horm 64:357–406

    PubMed  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    PubMed  CAS  Google Scholar 

  • Zittermann A, Schleithoff SS, Koerfer R (2005) Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr 94:483–492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, D.P. Vitamin D and ageing. Biogerontology 11, 1–16 (2010). https://doi.org/10.1007/s10522-009-9252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9252-0

Keywords

Navigation