Skip to main content

Advertisement

Log in

Effect of continuous exposure to low-dose-rate gamma irradiation on cell growth and lipid accumulation of marine microalgae

  • Published:
Aquaculture International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microalgae are a promising alternative source of lipid for biodiesel production. One of the most important decisions is biomass productivity and the lipid content of microalgae. However, few studies have investigated the correlation between low-dose-rate (LDR) chronic irradiation and lipid production using microalgae to date. The present study was undertaken to investigate whether the LDR chronic irradiation increases cell growth and lipid content in Tetraselmis suecica, Dunaliella tertiolecta, Phaeodactylum tricornutum and Nannochloropsis oceanic. Exposure to LDR chronic irradiation increased cell density, specific growth rate and biomass in four microalgae strains. Furthermore, T. suecica, D. tertiolecta and P. tricornutum enhanced the lipid-specific BODIPY fluorescence intensity dependent on low-dose-rate irradiation. In particular, T. suecica showed the highest increase ratio of biomass and lipid content in 6 mGy h−1. These results suggest that LDR chronic irradiation induces enhancement of biomass and lipid content of marine microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, New York

    Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Carioca JO (2010) Biofuels: problems, challenges and perspectives. Biotechnol J 5(3):260–273

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Feng J, Sun J, Huang Y, Zhou J, Cen K (2014) Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication. Energy 78(15):9–15

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Chung BY, Lee YB, Baek MH, Kim JH, Wi SG, Kima JS (2006) Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrohizon S. Radiat Phys Chem 75(9):1018–1023

    Article  CAS  Google Scholar 

  • Conter A, Dupouy D, Planel H (1983) Demonstration of a biological effect of natural ionizing radiations. Radiat Biol Relat Stud Phys Chem Med 43(4):421–432

    CAS  Google Scholar 

  • Conter A, Dupouy D, Planel H (1984) Influence of growth phase on radiation stimulation of proliferation in Synechococcus lividus in culture. Radiat Res 99(3):651–658

    Article  Google Scholar 

  • Conter A, Dupouy D, Delteil C, Planel H (1986) Influence of very low doses of ionizing radiation on Synechococcus lividus metabolism during the initial growth phase. Arch Microbiol 144(3):286–290

    Article  CAS  PubMed  Google Scholar 

  • Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing” green oil” in live algal cells. J Biosci Bioeng 109(2):198–201

    Article  CAS  PubMed  Google Scholar 

  • Croute F, Soleilhavoup J, Vidal S, Dupouy D, Planel H (1982) Paramecium tetraurelia growth stimulation under low-level chronic irradiation: investigations on a possible mechanism. Radiat Res 92(3):560–567

    Article  CAS  Google Scholar 

  • Elle IC, Olsen LCB, Pultz D, Rødkær SV, Færgeman NJ (2010) Something worth dyeing for: molecular tools for the dissection of lipid metabolism in Caenorhabditis elegans. FEBS Lett 584(11):2183–2193

    Article  CAS  PubMed  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68(3):639–642

    Article  CAS  PubMed  Google Scholar 

  • Esnault MA, Legue F, Chenal C (2010) Ionizing radiation: advances in plant response. Environ Exp Bot 68:231–237

    Article  CAS  Google Scholar 

  • Feng J, Cheng J, Cheng R, Zhang C, Zhou J, Cen K (2015) Screening the diatom Nitzschia sp. re-mutated by 137Cs-γ irradiation and optimizing growth conditions to increase lipid productivity. J Appl Phycol 27:661–672

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gordillo FJ, Goutx M, Figueroa FL, Niell FX (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10(2):135–144

    Article  CAS  Google Scholar 

  • Guzmán HM, de la Jara Valido A, Duarte LC, Presmanes KF (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult Int 18(2):189–199

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  PubMed  Google Scholar 

  • Katarzyna C, Facundo-Joaquin MR (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnol 3(1):21–34

    Article  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Chung BY, Kim JS, Wi SG (2005) Effects of in Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. J Plant Biol 48(1):47–56

    Article  CAS  Google Scholar 

  • Kim JS, Son Y, Bae MJ, Lee SS, Park SH, Lee HJ, Lee SI, CG, Kim SD, Jo WS (2015) Continuous exposure to low-dose-rate gamma irradiation reduces airway inflammation in ovalbumin-induced asthma. PLoS ONE 10(11):e0143403

    Article  PubMed  PubMed Central  Google Scholar 

  • Kume T, Furuta M, Todoriki S, Uenoyama N, Kobayashi Y (2009) Status of food irradiation in the world. Radiat Phys Chem 78(3):222–226

    Article  CAS  Google Scholar 

  • Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17(6):551–556

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722

    Article  CAS  PubMed  Google Scholar 

  • Luckey TD, Lawrence KS (2006) Radiation Hormesis: the Good, the Bad, and the Ugly. Dose Response 4(3):169–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew. Sustainable Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Renaud SM, Thinh LV, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1):195–214

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Lab, Department of Energy, Golden, Colorado, U.S.A. Report number NREL/TP-580-24190

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Rev Biotechnol 25(3):73–95

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101(3):223–226

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54(1):112–117

    Article  CAS  PubMed  Google Scholar 

  • Tornabene T, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • UNSCEAR (2000) The United Nations Scientific Committee on the effects of atomic radiation. Health Phys 79:314

    Article  Google Scholar 

  • Williams PJLB (2007) Biofuel: microalgae cut the social and ecological costs. Nature 450(7169):478

    Article  CAS  PubMed  Google Scholar 

  • Wood AM, Everroad R, Wingard L (2005) Measuring growth rates in microalgal cultures. Algal culturing techniques. Elsevier Academic Press, San Diego, pp 269–285

    Google Scholar 

  • Wu X, Ruan R, Du Z, Liu Y (2012) Current status and prospects of biodiesel production from microalgae energies 5:2667–2682

    CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi I (2001) Forty years of mutation breeding in Japan. Research and fruits. Gamma. Field Symp 40:1–14

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Nuclear R&D Program of the Ministry of Education, Science and Technology, Korea [50493-2011].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wol Soon Jo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Dong Hyeok Jeong and Min Ho Jeong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D.H., Jeong, M.H., Jeong, S.K. et al. Effect of continuous exposure to low-dose-rate gamma irradiation on cell growth and lipid accumulation of marine microalgae. Aquacult Int 25, 589–601 (2017). https://doi.org/10.1007/s10499-016-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0054-5

Keywords

Navigation