Skip to main content
Log in

Effects ofin Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We investigated the effects of low-dose inplanta irradiation on red pepper plants treated with gamma rays of 2, 4, 8, and 16 Gy. Growth was stimulated at 2 and 4 Gy but inhibited at 8 and 16 Gy. Photochemical quenching (qP) increased slightly in all treatment groups for 1 d after irradiation (DAl), whereas non-photochemical quenching (NPQ) decreased more noticeably. These changes in qP and NPQ were transient and had almost recovered to the control level by 2 DAl. Although carotenoid pigments also fluctuated during the experimental period, chlorophylls were almost entirely insensitive to the gamma rays. Irradiation also partially protected leaves from a decrease in photochemical efficiency (Fv/Fm) under conditions of UV-B (2.2 W m-2) and high light intensity (800 μmol m-2 s-1). This enhanced stress resistance could be partly explained by higher levels of SOD and APX activities, as well as ascorbate content. Our results demonstrate for the first time that the carotenoid pigments are the most radio-sensitive and fastest recovering compounds in plants, and that SOD, APX, and ascorbate are important inducible factors for improving stress resistance through the use ofin planta gamma-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Al-Safadi B, Ayyoubi Z, Jawdat D (2000) The effect of gamma irradiation on potato microtuber productionin vitro. Plant Cell Tiss Org Cult 61: 183–187

    Article  Google Scholar 

  • Al-Safadi B, Simon PW (1996) Gamma irradiation-induced variation in carrots (Daucus carota L). J Amer Soc Hort Sci 121: 599–603

    Google Scholar 

  • Arnon Dl (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant Physiol 24: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Baroli I, Niyogi KK (2000) Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Phil Trans R Soc Lond B 355: 1385–1394

    Article  CAS  Google Scholar 

  • Beyer WF, Fridovich Y (1987) Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal Biochem 161: 559–566

    Article  PubMed  CAS  Google Scholar 

  • Bishop Nl (1996) The pe-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga,Scenedesmus obliquus. J Photochem Photobiol B: Biol 36: 279–283

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ (2002) Hormesis: Changing view of the doseresponse, a personal account of the history and current status. Mut Res 511: 181–189

    CAS  Google Scholar 

  • Chakravarty B, Sen S (2001) Enhancement of regeneration potential and variability by y-irradiation in cultured cells ofScilla indica. Biol Plant 44: 189–193

    Article  Google Scholar 

  • Charbaji T, Nabulsi I (1999) Effect of low doses of gamma irradiation onin vitro growth of grapevine. Plant Cell Tiss Org Cult 57: 129–132

    Article  Google Scholar 

  • Conter A, Dupouy D, Delteil C, Planel H (1986) Influence of very low doses of ionizing radiation onSynechococcus lividus metabolism during the initial growth phase. Arch Microbiol 144: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Eidus LKh (2000) Hypothesis regarding a membrane-associated mechanism of biological action due to low-dose ionizing radiation. Rad Environ Biophys 39: 189–195

    Article  CAS  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116: 571–580

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a nonencapped, lightly carbonloaded C-18 high-performance liquid chromatographic column. J Chromatogr 543: 137–145

    Article  CAS  Google Scholar 

  • Gupta S, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993a) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Webb RP, Holaday AS, Allen RD (1993b) Overexpression of superoxide dismutases protects plants from oxidative stress. Plant Physiol 103: 1067–1073

    PubMed  Google Scholar 

  • Kim JH, Baek MH, Chung BY, Lee YB, Kim JS (2004a) Comparison of sensitivity to photoinhibition and UV-B stress between developing and mature leaves of red pepper (2Capsicum annuum L.) plants from control and gamma-irradiated seeds. J Kor Soc Hort Sci 45: 66–73

    CAS  Google Scholar 

  • Kim JH, Baek MH, Chung BY, Wi SG, Kim JS (2004b) Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. J Plant Biol 47: 314–321

    Article  CAS  Google Scholar 

  • Kim JS, Kim JK, Lee YK, Baek MW, Kim JG (1998) Effects of low dose gamma radiation on the germination and yield components of Chinese cabbage. Kor J Environ Agr 17: 274–278

    Google Scholar 

  • Kim JS, Lee YK, Park HS, Baek MW, Kim DH (2000) Influence of low dose gamma radiation on the growth of maize (Zea mays L.) varieties. Kor) Environ Agr 19: 328–331

    Google Scholar 

  • Kim JS, Lee YK, Song HS, Park HS, Kim JK (1999) Effects of low dose ionizing radiation on the growth and yield of soybean cultivars. Kor J Environ Agr 18: 66–69

    Google Scholar 

  • Koepp R, Kramer M (1981) Photosynthetic activity and distribution of photoassimilated14C in seedlings of Zeamays grown from gamma-irradiated seeds. Photosyn-thetica 15: 484–489

    Google Scholar 

  • Korystov YN, Narimanov AA (1997) Low doses of ionizing radiation and hydrogen peroxidase stimulate plant growth. Biologia (Bratislava) 52: 121–124

    CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Lee EK, Kim JS, Lee YK, Lee YB (1998) Effect of low dose γ-ray irradiation on the germination and growth in red pepper (Capsicum annuum L.). J Kor Soc Hort Sci 39: 670–675

    Google Scholar 

  • Lee HY, Kim JS, Baek MH, Lee YK, Im DS (2002a) Effects of low dose γ-radiation on the growth, activities of enzymes and photosynthetic activities of gourd (Lagenariasiceraria). Kor J Environ Biol 20: 197–204

    Google Scholar 

  • Lee HY, Kim JS, Baek MH, Park SC, Park Yl (2002b) Effects of low dose y-radiation on photosynthesis of red pepper (Capsicum annuum L.) and the reduction of photoinhibition. Kor J Environ Agr 21: 83–89

    Google Scholar 

  • Lee HY, Kim JS, Baek MH, Yoo JC, Kwon ST (2003) Effects of low dose y irradiation on physiological activities of radish (Raphanus sativus) during early growth and reduction of ultraviolet-B stress. J Kor Soc Hort Sci 44: 314–320

    CAS  Google Scholar 

  • Luckey TD (1980) Hormesis with Ionizing Radiation. CRC Press, Boca Raton, pp 32–38

    Google Scholar 

  • Luckey TD (1991) Radiation Hormesis. CRC Press, Boca Raton, p 9

    Google Scholar 

  • Ma YZ, Holt NE, Li XP, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100: 4377–4382

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Ohno C, Domae Y, Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: Its relevance to monodehydroascorbate radical detected within vivo ESR. Biochim Biophys Acta 1504: 275–287

    Article  PubMed  CAS  Google Scholar 

  • Marchi PD, Matinoli GO, Bagnoli L (1962) The radioresistance of species of the genus Avena in relation to their degree of ploidy. Abstract, 2nd Int Cong Radiat Res, Harrogate, UK, pp 111–112

  • Miller MW (1987) Radiation hormesis in plants. Health Phys 52: 607–616

    PubMed  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558–1566

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloro-plasts. Plant Cell Physiol 22: 867–880

    CAS  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94: 14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Tatara A (1995) Effects of low-dose y-irradia-tion on the cell cycle duration of barley roots. Environ Exp Bot 35: 379–388

    Article  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: Calculation ofqP andFv′/ Fm′ without measuringFo′. Photosynth Res 54: 135–142

    Article  CAS  Google Scholar 

  • Planel H, Soleilhavoup JP, Tixador A, Richoilley G, Conter A, Croute F, Caratero C, Gaubin YR (1987) Influence on cell proliferation of background radiation or exposure to very low chronic gamma-radiation. Health Phys 52: 571–578

    Article  PubMed  CAS  Google Scholar 

  • Sagan LA (1987) What is hormesis and why haven’t we heard it before? Health Phys 52: 521–525

    PubMed  CAS  Google Scholar 

  • Sane PV, Ivanov AG, Hurry V, Huner NP, Oquist G (2003) Changes in the redox potential of primary and secondary electron-accepting quinines in photosystem II confer increased resistance to photoinhibition in lowtemperature-acclimatedArabidopsis. Plant Physiol 132: 2144–2151

    Article  PubMed  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59: 1011–1012

    Article  PubMed  CAS  Google Scholar 

  • Skok J, Charney W (1962) An examination of stimulating effects of ionizing radiations in plants. Abstract, 2nd Int Cong Radiat Res, Harrogate, UK, p 181

  • Spencer JL, Cabanillas E (1956) The effect of X-rays and thermal neutrons on the development of trail ng indigo (Indigofera endecaphylla) plants. Amer J Bot 43: 289–296

    Article  CAS  Google Scholar 

  • Stan S, Croitoru A (1970) Effect of low, moderate and high levels of gamma radiations (60Co) on soybean plants. I. Analysis of growth and yield. Stim News 1: 23–25

    Google Scholar 

  • Taguchi Y, Tsutsumi N, Tatara A, Eguchi H, Tano S (1994) Effects of low-dose y-irradiation on the root apical mer-istem of barley. Environ Mut Res Commun 16: 205–209

    CAS  Google Scholar 

  • Thiede ME, Link SO, Fellows RJ, Beedlow PA (1995) Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning inHelianthui annuus. Environ Exp Bot 35: 33–41

    Article  Google Scholar 

  • van Kooten O, Snei FH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25: 147–150

    Article  Google Scholar 

  • Wiendl FM, Wiendl FW, Wiendl JA, Vedovatto A, Arthur V (1995) Increase of anion yield through low dose of gamma irradiation of its seeds. Radiat Phys Chem 46: 793–795

    Article  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123: 223–233

    Article  PubMed  CAS  Google Scholar 

  • Zaka R, Chenal C, Misset MT (2004) Effects of low doses of short-term gamma irradiation on growth and development through two generations ofPisum sativum. Sci Total Environ 320: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Zaka R, Vandecasteele CM, Misset MT (2002) Effects of low chronic doses of ionizing radiation or antioxidant enzymes and G6PDH activities inStipa capillata (Poaceae). J Exp Bot 53: 1979–1987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Yeoup Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Chung, B.Y., Kim, JS. et al. Effects ofin Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. J. Plant Biol. 48, 47–56 (2005). https://doi.org/10.1007/BF03030564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030564

Keywords

Navigation