Skip to main content

Advertisement

Log in

Certify or not? An analysis of organic food supply chain with competing suppliers

  • S.I.: Agriculture Analytics, BigData and Sustainable Development
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Customers expect companies to provide clear health-related information for the products they purchase in a big data environment. Organic food is data-enabled with the organic label, but the certification cost discourages small-scale suppliers from certifying their product. This lack of a label means that product that satisfies the organic standard is regarded as conventional product. By considering the trade-off between the profit gained from organic label and additional costs of certification, this paper investigates an organic food supply chain where a leading retailer procures from two suppliers with different brands. Customers care about both the brand-value and quality (more specifically, if food is organic or not) when purchasing the product. We explore the organic certification and wholesale pricing strategies for suppliers, and the supplier selection and retail pricing strategies for the retailer. We find that when two suppliers adopt asymmetric certification strategy, the retailer tends to procure the product with organic label. The supplier without a brand name can compensate with organic certification, which leads to more profits than the branded rival. As the risk of being abandoned by the retailer increases, the supplier without a brand name is more eager than the rival to obtain the organic label. If both suppliers certify the product, however, they will fall into a prisoner’s dilemma under situation with low health utility from organic label and high certification cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.researchandmarkets.com/research/w9wn47/global_organic?w=5.

  2. http://www.chinadaily.com.cn/regional/Harbinrice.html.

References

  • Ahearn, M. C., Armbruster, W., & Young, R. (2016). Big data’s potential to improve food supply chain environmental sustainability and food safety. International Food and Agribusiness Management Review, 19, 155–163.

    Google Scholar 

  • Anselmsson, J., VestmanBondesson, N., & Johansson, U. (2014). Brand image and customers’ willingness to pay a price premium for food brands. Journal of Product & Brand Management, 23(2), 90–102.

    Article  Google Scholar 

  • Assefa, T. T., Kuiper, W. E., & Meuwissen, M. P. (2014). The effect of farmer market power on the degree of farm retail price transmission: A simulation model with an application to the Dutch ware potato supply chain. Agribusiness, 30(4), 424–437.

    Article  Google Scholar 

  • Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79, 3–15.

    Article  Google Scholar 

  • Baltas, G. (2004). A model for multiple brand choice. European Journal of Operational Research, 154(1), 144–149.

    Article  Google Scholar 

  • Barbosa, R. M., Batista, B. L., Varrique, R. M., Coelho, V. A., Campiglia, A. D., & Barbosa, F., Jr. (2014). The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Research International, 61, 246–251.

    Article  Google Scholar 

  • Barbosa, R. M., de Paula, E. S., Paulelli, A. C., Moore, A. F., Souza, J. M. O., Batista, B. L., et al. (2016). Recognition of organic rice samples based on trace elements and support vector machines. Journal of Food Composition and Analysis, 45, 95–100.

    Article  Google Scholar 

  • Barrett, H. R., Browne, A. W., Harris, P. J. C., & Cadoret, K. (2002). Organic certification and the UK market: Organic imports from developing countries. Food Policy, 27(4), 301–318.

    Article  Google Scholar 

  • Bauer, H. H., Heinrich, D., & Schäfer, D. B. (2013). The effects of organic labels on global, local, and private brands: More hype than substance? Journal of Business Research, 66(8), 1035–1043.

    Article  Google Scholar 

  • Beuchelt, T. D., & Zeller, M. (2011). Profits and poverty: Certification’s troubled link for Nicaragua’s organic and fair trade coffee producers. Ecological Economics, 70(7), 1316–1324.

    Article  Google Scholar 

  • Blackburn, J., & Scudder, G. (2009). Supply chain strategies for perishable products: The case of fresh produce. Production and Operations Management, 18(2), 129–137.

    Article  Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., & Xu, X. (2010). Optimization and coordination of fresh product supply chains with freshness-keeping effort. Production and Operations Management, 19(3), 261–278.

    Article  Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., Xu, X., & Yu, G. (2013). Fresh-product supply chain management with logistics outsourcing. Omega, 41(4), 752–765.

    Article  Google Scholar 

  • Chen, M. F. (2007). Consumer attitudes and purchase intentions in relation to organic foods in Taiwan: Moderating effects of food-related personality traits. Food Quality and Preference, 18(7), 1008–1021.

    Article  Google Scholar 

  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171–209.

    Article  Google Scholar 

  • Chiang, W. Y. K., Chhajed, D., & Hess, J. D. (2003). Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Management Science, 49(1), 1–20.

    Article  Google Scholar 

  • Clark, P., & Martínez, L. (2016). Local alternatives to private agricultural certification in Ecuador: Broadening access to ‘new markets’? Journal of Rural Studies, 45, 292–302.

    Article  Google Scholar 

  • Cui, L., & Huang, Y. (2018). Exploring the schemes for green climate fund financing: International lessons. World Development, 101, 173–187.

    Article  Google Scholar 

  • Cui, L., & Song, M. (2019). Economic evaluation of the belt and road initiative from an unimpeded trade perspective. International Journal of Logistics Research and Applications, 22(1), 25–46.

    Article  Google Scholar 

  • Dabbert, S., Lippert, C., & Zorn, A. (2014). Introduction to the special section on organic certification systems: Policy issues and research topics. Food Policy, 49, 425–428.

    Article  Google Scholar 

  • De Magistris, T., & Gracia, A. (2008). The decision to buy organic food products in Southern Italy. British Food Journal, 110(9), 929–947.

    Article  Google Scholar 

  • Ellison, B., Duff, B. R., Wang, Z., & White, T. B. (2016). Putting the organic label in context: Examining the interactions between the organic label, product type, and retail outlet. Food Quality and Preference, 49, 140–150.

    Article  Google Scholar 

  • Ertek, G., & Griffin, P. M. (2002). Supplier-and buyer-driven channels in a two-stage supply chain. IIE Transactions, 34(8), 691–700.

    Google Scholar 

  • Feng, D., Chen, Q., Song, M., & Cui, L. (2019). Relationship between the degree of internationalization and performance in manufacturing enterprises of the Yangtze river delta region. Emerging Markets Finance and Trade, 55(1), 1–17.

    Article  Google Scholar 

  • Filippini, R., De Noni, I., Corsi, S., Spigarolo, R., & Bocchi, S. (2018). Sustainable school food procurement: What factors do affect the introduction and the increase of organic food? Food Policy, 76, 109–119.

    Article  Google Scholar 

  • Goetzke, B., Nitzko, S., & Spiller, A. (2014). Consumption of organic and functional food. A matter of well-being and health? Appetite, 77, 96–105.

    Article  Google Scholar 

  • Hazell, P., Poulton, C., Wiggins, S., & Dorward, A. (2010). The future of small farms: Trajectories and policy priorities. World Development, 38(10), 1349–1361.

    Article  Google Scholar 

  • Howlett, E. A., Burton, S., Bates, K., & Huggins, K. (2009). Coming to a restaurant near you? Potential consumer responses to nutrition information disclosure on menus. Journal of Consumer Research, 36(3), 494–503.

    Article  Google Scholar 

  • Hsu, S. Y., Chang, C. C., & Lin, T. T. (2016). An analysis of purchase intentions toward organic food on health consciousness and food safety with/under structural equation modeling. British Food Journal, 118(1), 200–216.

    Article  Google Scholar 

  • Janssen, M., & Hamm, U. (2012). Product labelling in the market for organic food: Consumer preferences and willingness-to-pay for different organic certification logos. Food Quality and Preference, 25(1), 9–22.

    Article  Google Scholar 

  • Jing, B. (2016). Behavior-based pricing, production efficiency, and quality differentiation. Management Science, 63(7), 2365–2376.

    Article  Google Scholar 

  • Karaer, Ö., & Erhun, F. (2015). Quality and entry deterrence. European Journal of Operational Research, 240(1), 292–303.

    Article  Google Scholar 

  • Klonsky, K., & Tourte, L. (1998). Organic agricultural production in the United States: Debates and directions. American Journal of Agricultural Economics, 80(5), 1119–1124.

    Article  Google Scholar 

  • Krishna, A. (1992). The normative impact of consumer price expectations for multiple brands on consumer purchase behavior. Marketing Science, 11(3), 266–286.

    Article  Google Scholar 

  • Lee, W. C. J., Shimizu, M., Kniffin, K. M., & Wansink, B. (2013). You taste what you see: Do organic labels bias taste perceptions? Food Quality and Preference, 29(1), 33–39.

    Article  Google Scholar 

  • Luo, Z., Chen, X., Chen, J., & Wang, X. (2017). Optimal pricing policies for differentiated brands under different supply chain power structures. European Journal of Operational Research, 259(2), 437–451.

    Article  Google Scholar 

  • Luo, Z., Chen, X., & Wang, X. (2016). The role of co-opetition in low carbon manufacturing. European Journal of Operational Research, 253(2), 392–403.

    Article  Google Scholar 

  • Marotta, G., Simeone, M., & Nazzaro, C. (2014). Product reformulation in the food system to improve food safety. Evaluation of policy interventions. Appetite, 74, 107–115.

    Article  Google Scholar 

  • Matsubayashi, N. (2007). Price and quality competition: The effect of differentiation and vertical integration. European Journal of Operational Research, 180(2), 907–921.

    Article  Google Scholar 

  • Matsubayashi, N., & Yamada, Y. (2008). A note on price and quality competition between asymmetric firms. European Journal of Operational Research, 187(2), 571–581.

    Article  Google Scholar 

  • Michaelidou, N., & Hassan, L. M. (2008). The role of health consciousness, food safety concern and ethical identity on attitudes and intentions towards organic food. International Journal of Consumer Studies, 32(2), 163–170.

    Article  Google Scholar 

  • Motta, M. (1993). Endogenous quality choice: Price vs. quantity competition. The Journal of Industrial Economics, 41(2), 113–131.

    Article  Google Scholar 

  • Ozinci, Y., Perlman, Y., & Westrich, S. (2017). Competition between organic and conventional products with different utilities and shelf lives. International Journal of Production Economics, 191, 74–84.

    Article  Google Scholar 

  • Parrot, N., Olesen, J., & Høgh-Jensen, H. (2007). Certified and noncertified organic farming in the developing world. In N. Halberg, H. Alrøe, M. Knudsen, & E. Kristensen (Eds.), Global development of organic agriculture: Challenges and promises (pp. 153–180). Wallingford, Oxfordshire: CAB International.

    Google Scholar 

  • Perlman, Y., Ozinci, Y., & Westrich, S. (2019). Pricing decisions in a dual supply chain of organic and conventional agricultural products. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03169-3.

    Article  Google Scholar 

  • Pollard, S., Namazi, H., & Khaksar, R. (2019). Big data applications in food safety and quality. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 356–363). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Popa, M. E., Mitelut, A. C., Popa, E. E., Stan, A., & Popa, V. I. (2018). Organic foods contribution to nutritional quality and value. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2018.01.003.

    Article  Google Scholar 

  • Sazvar, Z., Rahmani, M., & Govindan, K. (2018). A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health. Journal of Cleaner Production, 194, 564–583.

    Article  Google Scholar 

  • Schifferstein, H. N., & Ophuis, P. A. O. (1998). Health-related determinants of organic food consumption in the Netherlands. Food Quality and Preference, 9(3), 119–133.

    Article  Google Scholar 

  • Sjostrom, T., Corsi, A. M., Driesener, C., & Chrysochou, P. (2014). Are food brands that carry light claims different? Journal of Brand Management, 21(4), 325–341.

    Article  Google Scholar 

  • Snider, A., Gutiérrez, I., Sibelet, N., & Faure, G. (2017). Small farmer cooperatives and voluntary coffee certifications: Rewarding progressive farmers of engendering widespread change in Costa Rica? Food Policy, 69, 231–242.

    Article  Google Scholar 

  • Teng, L., Laroche, M., & Zhu, H. (2007). The effects of multiple-ads and multiple-brands on consumer attitude and purchase behavior. Journal of Consumer Marketing, 24(1), 27–35.

    Article  Google Scholar 

  • Vega-Zamora, M., Torres-Ruiz, F. J., Murgado-Armenteros, E. M., & Parras-Rosa, M. (2014). Organic as a heuristic cue: What Spanish consumers mean by organic foods. Psychology & Marketing, 31(5), 349–359.

    Article  Google Scholar 

  • Veldstra, M. D., Alexander, C. E., & Marshall, M. I. (2014). To certify or not to certify? Separating the organic production and certification decisions. Food Policy, 49, 429–436.

    Article  Google Scholar 

  • Wang, C., & Chen, X. (2017). Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Annals of Operations Research, 248(1–2), 471–491.

    Article  Google Scholar 

  • Wang, S., Hu, Q., & Liu, W. (2017). Price and quality-based competition and channel structure with consumer loyalty. European Journal of Operational Research, 262(2), 563–574.

    Article  Google Scholar 

  • Wu, L., Deng, S., & Jiang, X. (2018). Sampling and pricing strategy under competition. Omega, 80, 192–208.

    Article  Google Scholar 

  • Xie, J., Gao, Z., Swisher, M., & Zhao, X. (2016). Consumers’ preferences for fresh broccolis: Interactive effects between country of origin and organic labels. Agricultural Economics, 47(2), 181–191.

    Article  Google Scholar 

  • Zhou, Y. (2018). The role of green customers under competition: A mixed blessing? Journal of Cleaner Production, 170, 857–866.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 71771053, 71628101 and 71371003) and the Key Research and Development Plan (Modern Agriculture) of Jiangsu Province (No. BE2018385), as well as Natural Sciences and Engineering Research Council of Canada (Grant No 201806690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The equilibrium prices for a given certification strategy

We consider the situation of the retailer procuring two products, i.e., \( \frac{{p_{2} - \upzeta_{2} \Delta }}{{p_{1} - \upzeta_{1} \Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {\upzeta_{1} - \upzeta_{2} } \right)\Delta . \)

\( \pi_{s1} = w_{1} \left( {1 - \frac{{w_{1} + m_{1} - \left( {w_{2} + m_{2} } \right) + \left( {\upzeta_{2} - \upzeta_{1} } \right)\Delta }}{1 - \theta }} \right) - \upzeta_{1} F \), \( \pi_{s2} = w_{2} \left( {\frac{{w_{1} + m_{1} - \left( {w_{2} + m_{2} } \right) + \left( {\upzeta_{2} - \upzeta_{1} } \right)\Delta }}{1 - \theta } - \frac{{w_{2} + m_{2} - \upzeta_{2} \Delta }}{\theta }} \right) - \upzeta_{2} F \), let \( \frac{{\partial \pi_{s1} }}{{\partial w_{1} }} = \frac{{\partial \pi_{s2} }}{{\partial w_{2} }} = 0 \), we obtain \( w_{1} = \frac{{2 - 2\theta - \left( {2 - \theta } \right)m_{1} + m_{2} + \left( {2 - \theta } \right)\upzeta_{1} \Delta - \upzeta_{2} \Delta }}{4 - \theta } \) and \( w_{2} = \frac{{\theta m_{1} - \left( {2 - \theta } \right)m_{2} + \theta \left( {1 - \theta - \upzeta_{1} \Delta } \right) + \left( {2 - \theta } \right)\upzeta_{2} \Delta }}{4 - \theta } \). Substituting \( w_{1} \) and \( w_{2} \) into (5), we get: \( \pi_{r} = m_{1} \left( {\frac{{2 - 2\theta - \left( {2 - \theta } \right)m_{1} + m_{2} + \left( {2 - \theta } \right)\upzeta_{1} \Delta - \upzeta_{2} \Delta }}{{\left( {4 - \theta } \right)\left( {1 - \theta } \right)}}} \right) + m_{2} \left( {\frac{{\theta m_{1} - \left( {2 - \theta } \right)m_{2} + \theta \left( {1 - \theta - \upzeta_{1} \Delta } \right) + \left( {2 - \theta } \right)\upzeta_{2} \Delta }}{{\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta }}} \right) \), let \( \frac{{\partial \pi_{r} }}{{\partial m_{1} }} = \frac{{\partial \pi_{r} }}{{\partial m_{2} }} = 0 \), we obtain \( m_{2}^{*} = \frac{1}{2}\left( {\theta + \upzeta_{2} \Delta } \right) \), \( m_{1}^{*} = \frac{1}{2}\left( {1 + \upzeta_{1} \Delta } \right) \). Replacing \( m_{2} \) and \( m_{1} \) with \( m_{2}^{*} \) and \( m_{1}^{*} \) into \( w_{2}^{*} \) and \( w_{1}^{*} \), then we have \( w_{1}^{*} = \frac{{2 - 2\theta + \left( {2 - \theta } \right)\upzeta_{1} \Delta - \upzeta_{2} \Delta }}{{2\left( {4 - \theta } \right)}} \) and \( w_{2}^{*} = \frac{{\theta \left( {1 - \theta - \upzeta_{1} \Delta } \right) + \left( {2 - \theta } \right)\upzeta_{2} \Delta }}{{2\left( {4 - \theta } \right)}} \). We further get Eqs. (15)–(19).

Appendix 2: Certification strategy if \( \theta = 1 \)

If \( \theta = 1 \), the utility a customer derives from product \( n \) can be denoted as \( u_{n} = v - p_{n} + \upzeta_{n} \Delta \), the equilibrium price will satisfy \( p_{2} - p_{1} = \left( {\upzeta_{2} - \upzeta_{1} } \right)\Delta \). If not, the demand of one supplier will be zero, so this supplier will adjust his wholesale price to satisfy \( p_{2} - p_{1} = \left( {\upzeta_{2} - \upzeta_{1} } \right)\Delta \). The customer will purchase the product if \( u_{n} \ge 0 \), the overall demand will be \( D = 1 - p_{n} + \upzeta_{n} \Delta \), and the final demand for supplier \( n \) will be split equally, which can be denoted as \( D_{n} = \frac{{1 - p_{n} + \upzeta_{n} \Delta }}{2} \). By maximizing \( \pi_{sn} = \left( {\frac{{1 - \left( {w_{n} + m_{n} } \right) + \upzeta_{n} \Delta }}{2}} \right)w_{n} \), we get \( w_{n}^{*} = \frac{1}{2}\left( {1 - m_{n} + \varDelta \upzeta_{n} } \right) \). Substituting \( w_{n}^{*} \) into \( \pi_{r} = \mathop \sum \nolimits_{n = 1}^{2} \left( {\frac{{1 - \left( {w_{n} + m_{n} } \right) + \upzeta_{n} \Delta }}{2}} \right)m_{n} \) and making \( \frac{{\partial \pi_{r} }}{{\partial m_{n} }} = 0 \), we get \( m_{n}^{*} = \frac{1}{2}\left( {1 + \varDelta \upzeta_{n} } \right) \). Substituting \( m_{n}^{*} \) into \( w_{n}^{*} \), we get \( w_{n}^{*} = \frac{1}{4}\left( {1 + \varDelta \upzeta_{n} } \right) \) and \( p_{n}^{*} = \frac{3}{4}\left( {1 + \varDelta \upzeta_{n} } \right) \). By substituting \( p_{n}^{*} \) into the constraint of \( p_{2} - p_{1} = \left( {\upzeta_{2} - \upzeta_{1} } \right)\Delta \), we get \( \upzeta_{1} = \upzeta_{2} \). The suppliers will certify the product if \( \pi_{sn} \left( {\upzeta_{n} = 1} \right) - \pi_{sn} \left( {\upzeta_{n} = 0} \right) > 0 \), i.e., \( F < \frac{1}{32}\varDelta \left( {2 + \varDelta } \right) \).

Appendix 3

Proof of Lemma 1

  1. (i)

    \( \frac{{\partial w_{1}^{*} }}{\partial \theta } = - \frac{{6 + 2\varDelta \zeta_{1} + \varDelta \zeta_{2} }}{{2\left( {4 - \theta } \right)^{2} }} < 0 \),

    $$ \frac{{\partial \pi_{s1}^{*} }}{\partial \theta } = \frac{{\left( {2 - 2\theta + \varDelta \left( {2 - \theta } \right)\zeta_{1} - \varDelta \zeta_{2} } \right)\left( {2\left( { - 2 + \theta + \theta^{2} } \right) + \varDelta \left( {4 - \left( {2 - \theta } \right)\theta } \right)\zeta_{1} - 3\varDelta \left( {2 - \theta } \right)\zeta_{2} } \right)}}{{4\left( {4 - \theta } \right)^{3} \left( {1 - \theta } \right)^{2} }} < 0. $$
  2. (ii)

    \( \frac{{\partial w_{2}^{*} }}{\partial \theta } = \frac{{4 - \left( {8 - \theta } \right)\theta - 2\varDelta \left( {2\zeta_{1} + \zeta_{2} } \right)}}{{2\left( {4 - \theta } \right)^{2} }} \), when \( \varDelta = 0 \), the maximum of \( \frac{{\partial w_{2}^{*} }}{\partial \theta } \) equals \( \frac{{4 - \left( {8 - \theta } \right)\theta }}{{2\left( {4 - \theta } \right)^{2} }} \), thus, we find that when \( \theta > 4 - 2\sqrt 3 \), \( \frac{{\partial w_{2}^{*} }}{\partial \theta } < 0 \), when \( \theta < 4 - 2\sqrt 3 \), if \( \varDelta < \frac{{4 - 8\theta + \theta^{2} }}{{4\zeta_{1} + 2\zeta_{2} }} \), \( \frac{{\partial w_{2}^{*} }}{\partial \theta } > 0 \), else, \( \frac{{\partial w_{2}^{*} }}{\partial \theta } < 0 \).

  3. (iii)

    In scenario I, \( {\upzeta }_{1} = {\upzeta }_{2} = 1 \), after substituting \( p_{1}^{*} \) and \( p_{2}^{*} \) into the constraint \( \frac{{p_{2} - \upzeta_{2} \Delta }}{{p_{1} - \upzeta_{1} \Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {\upzeta_{1} - \upzeta_{2} } \right)\Delta \), we get that the retailer will procure two products simultaneously. In scenario II, \( \upzeta_{1} = 1 \), \( \upzeta_{2} = 0 \), after substituting \( p_{1}^{*} \) and \( p_{2}^{*} \) into the constraint \( \frac{{p_{2} - \upzeta_{2} \Delta }}{{p_{1} - \upzeta_{1} \Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {\upzeta_{1} - \upzeta_{2} } \right)\Delta \), we get that the retailer will procure two products simultaneously if \( \varDelta \le 1 - \theta \); otherwise, he will only procure products from supplier 1.

    $$ \begin{aligned} \pi_{s2}^{*} & = \frac{{\left( {\theta \left( { - 1 + \theta + \varDelta } \right) - \left( {2 - \theta } \right)\zeta_{2} \varDelta } \right)^{2} }}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} - \zeta_{2} F,\quad \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } = \frac{{\left( {\theta \left( {1 - \varDelta - \theta } \right) + \varDelta \left( {2 - \theta } \right)\zeta_{2} } \right)f_{1} \left( \varDelta \right)}}{{4\left( {4 - \theta } \right)^{3} \left( {1 - \theta } \right)^{2} \theta^{2} }}, \\ f_{1} \left( \varDelta \right) & = 4\theta - 11\theta^{2} + 7\theta^{3} + \varDelta \left( {18\theta \zeta_{2} + 2\theta^{3} \zeta_{2} + 2\theta^{3} - 4\theta - \theta^{2} - 9\theta^{2} \zeta_{2} - 8\zeta_{2} } \right). \\ \end{aligned} $$

    Since \( \frac{{\partial f_{1} \left( \varDelta \right)}}{\partial \varDelta } < 0 \), the maximum of \( f_{1} \left( \varDelta \right) \) which equals \( 4\theta - 11\theta^{2} + 7\theta^{3} \) is obtained at \( \varDelta = 0 \). The minimum of \( f_{1} \left( \varDelta \right) \) which equals \( \left( { - 1 + \theta } \right)\left( {8 + \theta \left( { - 10 + 11\theta } \right)} \right) \) in scenario I and \( - 2\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta^{2} \) in scenario II is obtained at \( \varDelta = 1 \) and \( \varDelta = 1 - \theta \) respectively. We find that the minimum of \( f_{1} \left( \varDelta \right) \) in scenario I and II is less than 0. Thus, when \( \theta > \frac{4}{7} \), \( f_{1} \left( {\varDelta = 0} \right) < 0 \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } < 0 \), when \( \theta < \frac{4}{7} \), if \( \varDelta < \frac{{\left( {1 - \theta } \right)\theta \left( { - 4 + 7\theta } \right)}}{{\theta \left( { - 4 + \theta \left( { - 1 + 2\theta } \right)} \right) + \left( { - 8 + \theta \left( {18 + \theta \left( { - 9 + 2\theta } \right)} \right)} \right)\zeta_{2} }} \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } > 0 \), else, \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } < 0 \).

    In scenario I, \( p_{1}^{*} - p_{2}^{*} = \frac{{\left( {1 - \theta } \right)\left( {6 - \varDelta - 2\theta } \right)}}{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial p_{1}^{*} - p_{2}^{*} }}{\partial \varDelta } = \frac{1 - \theta }{{2\left( { - 4 + \theta } \right)}} < 0 \), \( \frac{{\partial p_{1}^{*} - p_{2}^{*} }}{\partial \theta } = \frac{{3\left( {2 + \varDelta } \right) - 2\left( {4 - \theta } \right)^{2} }}{{2\left( {4 - \theta } \right)^{2} }} < 0 \). \( D_{1}^{*} = \frac{2 + \varDelta }{8 - 2\theta } \), \( \frac{{\partial D_{1}^{*} }}{\partial \theta } > 0 \), \( D_{2}^{*} = \frac{2\varDelta + \theta }{{8\theta - 2\theta^{2} }} \), if \( \Delta < \frac{{{\uptheta}^{2} }}{{8 - 4{\uptheta}}} \), \( \frac{{\partial D_{2}^{*} }}{\partial \theta } > 0 \), else, \( \frac{{\partial D_{2}^{*} }}{\partial \theta } < 0 \). \( D_{1}^{*} - D_{2}^{*} = \frac{{\varDelta \left( { - 2 + \theta } \right) + \theta }}{{2\left( {4 - \theta } \right)\theta }} \), if \( \theta > \frac{2\varDelta }{1 + \varDelta } \), \( D_{1}^{*} > D_{2}^{*} \), else, \( D_{1}^{*} < D_{2}^{*} \), \( \frac{{\partial D_{1}^{*} - D_{2}^{*} }}{\partial \theta } = \frac{1}{4}\left( {\frac{2 + \varDelta }{{\left( {4 - \theta } \right)^{2} }} + \frac{\varDelta }{{\theta^{2} }}} \right) > 0 \).

  4. (iv)

    In scenario III, \( {\upzeta }_{1} = 0 \), \( {\upzeta }_{2} = 1 \), \( \pi_{s2}^{*} = \frac{{\left( {\theta \left( {1 - \theta } \right) + \left( {2 - \theta } \right)\Delta } \right)^{2} }}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} - \zeta_{2} F \). After substituting \( p_{1}^{*} \) and \( p_{2}^{*} \) into the constraint \( \frac{{p_{2} - \zeta_{2} \Delta }}{{p_{1} - \zeta_{1} \Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {\zeta_{1} - \zeta_{2} } \right)\Delta \), we get that the retailer will procure two products simultaneously if \( \varDelta \le 2 - 2\theta \); otherwise, he will only procure products from supplier 2.

    \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } = \frac{{\left( {\varDelta \left( {2 - \theta } \right) + \left( {1 - \theta } \right)\theta } \right)f_{2} \left( \varDelta \right)}}{{4\left( {4 - \theta } \right)^{3} \left( {1 - \theta } \right)^{2} \theta^{2} }} \), \( f_{2} \left( \varDelta \right) = \left( {1 - \theta } \right)\theta \left( {4 - 7\theta } \right) + \varDelta \left( { - 8 + \theta \left( {18 + \theta \left( { - 9 + 2\theta } \right)} \right)} \right) \), \( f_{2} \left( {\varDelta = 0} \right) = \left( {1 - \theta } \right)\theta \left( {4 - 7\theta } \right) \), if \( \theta > \frac{4}{7} \), \( f_{2} \left( {\varDelta = 0} \right) < 0 \), else, \( f_{2} \left( {\varDelta = 0} \right) > 0 \). \( f_{2} \left( {\varDelta = 2 - 2\theta } \right) = - \left( {4 - \theta } \right)\left( {1 - \theta } \right)\left( {4 - \theta \left( {9 - 4\theta } \right)} \right) \), if \( \theta > \frac{{9 - \sqrt {17} }}{8} \), \( f_{2} \left( {\varDelta = 2 - 2\theta } \right) > 0 \), else, \( f_{2} \left( {\varDelta = 2 - 2\theta } \right) < 0 \). Thus, we get that when \( \theta < \frac{4}{7} \), if \( \varDelta < \frac{{\left( {1 - \theta } \right)\theta \left( { - 4 + 7\theta } \right)}}{{ - 8 + \theta \left( {18 + \theta \left( { - 9 + 2\theta } \right)} \right)}} \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } > 0 \), else, \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } < 0 \); when \( \frac{4}{7} < \theta < \frac{{9 - \sqrt {17} }}{8} \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } < 0 \); when \( \theta > \frac{{9 - \sqrt {17} }}{8} \), if \( \varDelta < \frac{{\left( {1 - \theta } \right)\theta \left( { - 4 + 7\theta } \right)}}{{ - 8 + \theta \left( {18 + \theta \left( { - 9 + 2\theta } \right)} \right)}} \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } < 0 \), else, \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } > 0 \).

    In scenario IV, \( {\upzeta }_{1} = {\upzeta }_{2} = 0 \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } = \frac{4 - 7\theta }{{4\left( {4 - \theta } \right)^{3} }} \), if \( \theta < \frac{4}{7} \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } > 0 \), else, \( \frac{{\partial \pi_{s2}^{*} }}{\partial \theta } < 0 \).□

Proof of Proposition 1

  1. (i)

    \( \frac{{\partial \pi_{r}^{ *} }}{\partial \theta } = \frac{{f_{3} \left( \varDelta \right)}}{{8\left( {4 - \theta } \right)^{2} \theta^{2} }} \), \( f_{3} \left( \varDelta \right) = \varDelta^{2} \left( {8\theta - 16 + 2\theta^{2} } \right) + 12\varDelta \theta^{2} + 12\theta^{2} \), \( f_{3} \left( {\varDelta = 1} \right) = - 16 + 8\theta + 26\theta^{2} \), if \( \theta > \frac{2}{13}\left( {3\sqrt 3 - 1} \right) \), \( f_{3} \left( {\varDelta = 1} \right) > 0 \), thus, \( \frac{{\partial \pi_{r}^{ *} }}{\partial \theta } > 0 \); if \( \theta < \frac{2}{13}\left( {3\sqrt 3 - 1} \right) \), \( f_{3} \left( {\varDelta = 1} \right) < 0 \), if \( \varDelta < \varDelta_{r}^{*} \), \( f_{3} \left( \varDelta \right) > 0 \), thus, \( \frac{{\partial \pi_{r}^{ *} }}{\partial \theta } > 0 \); if \( \varDelta > \varDelta_{r}^{*} \), \( \frac{{\partial \pi_{r}^{ *} }}{\partial \theta } < 0 \).

  2. (ii)

    \( \frac{{\partial \pi_{sc}^{ *} }}{\partial \theta } = \frac{{f_{4} \left( \varDelta \right)}}{{4\left( {4 - \theta } \right)^{3} \theta^{2} }} \), \( f_{4} \left( \varDelta \right) = 2\varDelta \theta^{2} \left( {4 - 7\theta } \right) + \theta^{2} \left( {20 - 17\theta } \right) + 2\varDelta^{2} \left( {\theta \left( {18 - \theta \left( {5 + \theta } \right)} \right) - 24} \right) \), \( f_{4} \left( {\varDelta = 1} \right) = - 48 + 3\theta \left( {12 + \left( {6 - 11\theta } \right)\theta } \right) < 0 \), if \( \varDelta < \frac{{\left( {4 - 7\theta } \right)\theta^{2} + \theta \sqrt {3\left( { - 4 + \theta } \right)^{2} \left( {20 - \theta \left( {22 - 5\theta } \right)} \right)} }}{{2\left( {24 + \theta \left( { - 18 + \theta \left( {5 + \theta } \right)} \right)} \right)}} \), \( \frac{{\partial \pi_{sc}^{ *} }}{\partial \theta } > 0 \), else, \( \frac{{\partial \pi_{sc}^{ *} }}{\partial \theta } < 0 \).

  3. (iii)

    \( E\left( {CS} \right) = \frac{{2\varDelta \theta \left( {8 + \theta } \right) + \left( {\varDelta^{2} + \theta } \right)\left( {4 + 5\theta } \right)}}{{8\left( {4 - \theta } \right)^{2} \theta }} \), \( \frac{{\partial E\left( {CS} \right)}}{\partial \theta } = \frac{{f_{5} \left( \varDelta \right)}}{{8\left( {4 - \theta } \right)^{3} \theta^{2} }} \), \( f_{5} \left( \varDelta \right) = 2\varDelta \theta^{2} \left( {20 + \theta } \right) + 2\varDelta^{2} \left( {2 + \theta } \right)\left( { - 4 + 5\theta } \right) + \theta^{2} \left( {28 + 5\theta } \right) \), \( f_{5} \left( {\varDelta = 1} \right) = - 16 + \theta \left( {12 + \theta \left( {78 + 7\theta } \right)} \right) \), when \( \theta > \frac{4}{5} \), \( f_{5} \left( \varDelta \right) > 0 \), when \( \theta < \frac{4}{5} \), we let \( - 16 + \theta_{cs}^{*} \left( {12 + \theta_{cs}^{*} \left( {78 + 7\theta_{cs}^{*} } \right)} \right) = 0 \), if \( \theta < \theta_{cs}^{*} \), \( f_{5} \left( {\varDelta = 1} \right) < 0 \), if \( \theta > \theta_{cs}^{*} \), \( f_{5} \left( {\varDelta = 1} \right) > 0 \). Thus, we get if \( \theta > \theta_{cs}^{*} \), \( \frac{{\partial E\left( {CS} \right)}}{\partial \theta } > 0 \); otherwise, it increases in \( \theta \) when \( \varDelta < \varDelta_{cs}^{*} \) and decreases in \( \theta \) when \( \varDelta > \varDelta_{cs}^{*} \).

Proof of Proposition 2

Since \( D_{1}^{*} - D_{2}^{*} = \frac{{\theta - \varDelta \left( {2 - \theta } \right)}}{{2\left( {4 - \theta } \right)\theta }} \), we get if \( \varDelta < \frac{\theta }{2 - \theta } \), \( D_{1}^{*} > D_{2}^{*} \), if \( \varDelta > \frac{\theta }{2 - \theta } \), \( D_{1}^{*} < D_{2}^{*} \), \( \frac{{\partial D_{1}^{*} - D_{2}^{*} }}{\partial \varDelta } = \frac{{ - \left( {2 - \theta } \right)}}{{2\left( {4 - \theta } \right)\theta }} < 0 \), \( \frac{{\partial D_{1}^{*} - D_{2}^{*} }}{\partial \theta } = \frac{1}{4}\left( {\frac{2 + \varDelta }{{\left( {4 - \theta } \right)^{2} }} + \frac{\varDelta }{{\theta^{2} }}} \right) > 0 \). \( \frac{{\partial \pi_{s1}^{*} }}{{\partial\varDelta }} = \frac{{\left( {2 + \varDelta } \right)\left( {1 - \theta } \right)}}{{2\left( {4 - \theta } \right)^{2} }} > 0 \), \( \frac{{\partial \pi_{s2}^{*} }}{{\partial\varDelta }} = \frac{{\left( {1 - \theta } \right)\left( {2\varDelta + \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }} > 0 \), \( \pi_{s1}^{*} - \pi_{s2}^{*} = \frac{{\left( {\varDelta^{2} - \theta } \right)\left( {1 - \theta } \right)}}{{4\left( { - 4 + \theta } \right)\theta }} \), if \( \varDelta > \sqrt \theta \), \( \pi_{s1}^{*} < \pi_{s2}^{*} \), if \( \varDelta < \sqrt \theta \), \( \pi_{s1}^{*} > \pi_{s2}^{*} \). \( \frac{{\partial \pi_{s1}^{*} }}{{\partial\varDelta }} - \frac{{\partial \pi_{s2}^{*} }}{{\partial\varDelta }} = \frac{{\varDelta \left( {1 - \theta } \right)}}{{2\left( { - 4 + \theta } \right)\theta }} < 0 \). \( p_{1}^{*} - p_{2}^{*} = \frac{{\left( {1 - \theta } \right)\left( {6 - \varDelta - 2\theta } \right)}}{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial p_{1}^{*} - p_{2}^{*} }}{\partial \varDelta } = - \frac{{\left( {1 - \theta } \right)}}{{2\left( {4 - \theta } \right)}} < 0 \).

Compared with the scenario in which neither certify the product, the increase of supplier 1’s profit can be denoted by \( \pi_{{\Delta s1}}^{*} = \pi_{s1}^{*} \left( {\delta_{1} = \delta_{2} = 1} \right) - \pi_{s1}^{*} \left( {\delta_{1} = \delta_{2} = 0} \right) = \frac{{\varDelta \left( {4 + \varDelta } \right)\left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)^{2} }} \), the increase of supplier 2’s profit can be denoted by \( \pi_{{\Delta s2}}^{*} = \pi_{s2}^{*} \left( {\delta_{1} = \delta_{2} = 1} \right) - \pi_{s2}^{*} \left( {\delta_{1} = \delta_{2} = 0} \right) = \frac{{\varDelta \left( {1 - \theta } \right)\left( {\varDelta + \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }} \). \( \frac{{\partial \pi_{{\Delta s1}}^{*} }}{\partial \theta } = \frac{{\varDelta \left( {4 + \varDelta } \right)\left( {2 + \theta } \right)}}{{4\left( { - 4 + \theta } \right)^{3} }} < 0 \), \( \frac{{\partial \pi_{{\Delta s2}}^{*} }}{\partial \theta } = \frac{{\varDelta \left( {\theta^{2} \left( {2 + \theta } \right) + \varDelta \left( {4 - \theta \left( {3 - 2\theta } \right)} \right)} \right)}}{{\left( { - 4 + \theta } \right)^{3} \theta^{2} }} < 0 \).

Proof of Proposition 3

When \( \delta_{1} = \delta_{2} = 1 \) or \( \delta_{1} = \delta_{2} = 0 \), we find that \( p_{1}^{*} \) and \( p_{2}^{*} \) always satisfy \( \frac{{p_{2} - {\upzeta }_{2}\Delta }}{{p_{1} - {\upzeta }_{1}\Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {{\upzeta }_{1} - {\upzeta }_{2} } \right)\Delta \); when \( \delta_{1} = 1 \), \( \delta_{2} = 0 \), \( p_{1}^{*} \) and \( p_{2}^{*} \) will satisfy the above constraint if \( \varDelta \le 1 - \theta \); when \( \delta_{1} = 0 \), \( \delta_{2} = 1 \), \( p_{1}^{*} \) and \( p_{2}^{*} \) will satisfy the above constraint if \( \varDelta \le 2 - 2\theta \).

When \( \delta_{1} = \delta_{2} = 1 \), \( \frac{{\partial w_{1}^{*} }}{\partial \varDelta } = \frac{1 - \theta }{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial w_{2}^{*} }}{\partial \varDelta } = \frac{1 - \theta }{{\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial p_{1}^{*} }}{\partial \varDelta } = \frac{5 - 2\theta }{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial p_{2}^{*} }}{\partial \varDelta } = \frac{6 - 3\theta }{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial \pi_{s1}^{*} }}{\partial \varDelta } = \frac{2 - 2\theta + \varDelta - \varDelta \theta }{{2\left( { - 4 + \theta } \right)^{2} }} > 0 \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \varDelta } = \frac{{\varDelta \left( {2 - \theta } \right) + \theta \left( {1 - \varDelta - \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }} > 0 \), \( \frac{{\partial \pi_{r}^{*} }}{\partial \varDelta } = \frac{{\varDelta \left( {2 - \theta } \right)\theta + 2\theta \left( {1 - \theta - \varDelta } \right) + \left( {\left( {1 - \theta } \right)\theta + \varDelta \left( {2 - \theta } \right)} \right)}}{{2\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta }} > 0 \); When \( \delta_{1} = 1 \), \( \delta_{2} = 0 \), \( \frac{{\partial w_{1}^{*} }}{\partial \varDelta } = \frac{{\left( {2 - \theta } \right)}}{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial w_{2}^{*} }}{\partial \varDelta } = \frac{\theta }{{2\left( { - 4 + \theta } \right)}} < 0 \), \( \frac{{\partial p_{1}^{*} }}{\partial \varDelta } = \frac{3 - \theta }{4 - \theta } > 0 \), \( \frac{{\partial p_{2}^{*} }}{\partial \varDelta } = \frac{\theta }{{2\left( { - 4 + \theta } \right)}} < 0 \), \( \frac{{\partial \pi_{s1}^{*} }}{\partial \varDelta } = \frac{{\left( {2 - \theta } \right)\left( {2 - 2\theta - \varDelta \left( {2 - \theta } \right)} \right)}}{{2\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} > 0 \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \varDelta } = \frac{{\left( {\theta \left( { - 1 + \theta + \varDelta } \right)} \right)}}{{2\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} < 0 \), \( \frac{{\partial \pi_{r}^{*} }}{\partial \varDelta } = \frac{{\varDelta \left( {2 - \theta } \right)\theta + 2\theta \left( {1 - \theta } \right)}}{{2\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta }} > 0 \); When \( \delta_{1} = 0 \), \( \delta_{2} = 1 \), \( \frac{{\partial w_{1}^{*} }}{\partial \varDelta } = \frac{1}{{2\left( { - 4 + \theta } \right)}} < 0 \), \( \frac{{\partial w_{2}^{*} }}{\partial \varDelta } = \frac{2 - \theta }{{2\left( {4 - \theta } \right)}} > 0 \), \( \frac{{\partial p_{1}^{*} }}{\partial \varDelta } = \frac{1}{{2\left( { - 4 + \theta } \right)}} < 0 \), \( \frac{{\partial p_{2}^{*} }}{\partial \varDelta } = \frac{3 - \theta }{4 - \theta } > 0 \), \( \frac{{\partial \pi_{s1}^{*} }}{\partial \varDelta } = \frac{{\left( { - 2 + 2\theta + \varDelta } \right)}}{{2\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} < 0 \), \( \frac{{\partial \pi_{s2}^{*} }}{\partial \varDelta } = \frac{{\left( {2 - \theta } \right)\left( {\theta \left( {1 - \theta } \right) + \varDelta \left( {2 - \theta } \right)} \right)}}{{2\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} > 0 \), \( \frac{{\partial \pi_{r}^{*} }}{\partial \varDelta } = \frac{{\varDelta \left( {2 - \theta } \right)\theta + 2\theta \left( {1 - \theta } \right)}}{{2\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta }} > 0 \).

Proof of Proposition 4

We first consider the condition that \( \varDelta \le 1 - \theta \), the retailer will procure the products from both suppliers regardless of their organic label. To simplify the exposition, we use \( \pi_{s2yy}^{*} \) to represent supplier 2’s profit in the certification–certification scenario; similar symbols can be used to represent the two suppliers’ profit in different certification scenarios.

For supplier 2, given that supplier 1 adopts certification, supplier 2 adopts certification if \( \pi_{s2yy}^{*} > \pi_{s2yn}^{*} \), otherwise no certification; given that supplier 1 adopts no certification, supplier 2 adopts certification if \( \pi_{s2ny}^{*} > \pi_{s2nn}^{*} \), otherwise no certification. For supplier 1, given that supplier 2 adopts certification, supplier 1 adopts certification if \( \pi_{s1yy}^{*} > \pi_{s1ny}^{*} \), otherwise no certification; given that supplier 2 adopts no certification, supplier 1 adopts certification if \( \pi_{s1yn}^{*} > \pi_{s1nn}^{*} \), otherwise no certification.

By equating \( \pi_{s2yy}^{*} \) and \( \pi_{s2yn}^{*} \), we get the threshold certification cost \( \bar{F}_{11} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {2\left( {1 - \theta } \right)\theta + \varDelta \left( {2 - 3\theta } \right)} \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \); by equating \( \pi_{s2ny}^{*} \) and \( \pi_{s2nn}^{*} \), we get \( \bar{F}_{12} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \); by equating \( \pi_{s1yy}^{*} \) and \( \pi_{s1ny}^{*} \), we get \( \bar{F}_{13} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {4 - \left( {4 + \varDelta } \right)\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} \); by equating \( \pi_{s1yn}^{*} \) and \( \pi_{s1nn}^{*} \), we get \( \bar{F}_{14} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {2\left( {2 + \varDelta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} \).

Since \( \frac{{\bar{F}_{12} }}{{\bar{F}_{13} }} = \frac{{\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta }}{{\left( {4 - \left( {4 + \varDelta } \right)\theta } \right)\theta }} \), we get if \( \varDelta < \varDelta_{11} = - 2 + \frac{4}{{2 + \left( { - 1 + \theta } \right)\theta }} \), \( \bar{F}_{12} < \bar{F}_{13} \), else, \( \bar{F}_{12} > \bar{F}_{13} \). Since \( \frac{{\bar{F}_{11} }}{{\bar{F}_{13} }} = \frac{{\left( {2\left( {1 - \theta } \right)\theta + \varDelta \left( {2 - 3\theta } \right)} \right)}}{{\theta \left( {4 - \left( {4 + \varDelta } \right)\theta } \right)}} \), we get when \( \theta > \frac{{5 - \sqrt {17} }}{2} \approx 0.438 \), \( \bar{F}_{11} < \bar{F}_{13} \), when \( \theta < \frac{{5 - \sqrt {17} }}{2} \), if \( \varDelta < \varDelta_{12} = \frac{2\theta }{2 - \theta } \), \( \bar{F}_{11} < \bar{F}_{13} \), else if \( \varDelta > \varDelta_{12} \), \( \bar{F}_{11} > \bar{F}_{13} \). Since \( \frac{{\bar{F}_{12} }}{{\bar{F}_{14} }} = \frac{{\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta }}{{\theta \left( {2\left( {2 + \varDelta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}} \), we get when \( \theta > \frac{{5 - \sqrt {17} }}{2} \), \( \bar{F}_{12} < \bar{F}_{14} \), when \( \theta < \frac{{5 - \sqrt {17} }}{2} \), if \( \varDelta < \varDelta_{12} = \frac{2\theta }{2 - \theta } \), \( \bar{F}_{12} < \bar{F}_{14} \), else if \( \varDelta > \varDelta_{12} \), \( \bar{F}_{12} > \bar{F}_{14} \). Since \( \frac{{\bar{F}_{11} }}{{\bar{F}_{14} }} = \frac{{\left( {2\left( {1 - \theta } \right)\theta + \varDelta \left( {2 - 3\theta } \right)} \right)}}{{\theta \left( {2\left( {2 + \varDelta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}} \), we get when \( \theta > \frac{{7 - \sqrt {41} }}{2} \approx 0.298 \), \( \bar{F}_{11} < \bar{F}_{14} \), when \( \theta < \frac{{7 - \sqrt {41} }}{2} \), if \( \varDelta < \varDelta_{13} = \frac{{2\left( {1 - \theta } \right)\theta }}{{2 - \left( {5 - \theta } \right)\theta }} \), \( \bar{F}_{11} < \bar{F}_{14} \), else if \( \varDelta > \varDelta_{13} \), \( \bar{F}_{11} > \bar{F}_{14} \). In conclusion, we obtain the following results:

In the region of \( \theta < \frac{{7 - \sqrt {41} }}{2} \): when \( \varDelta < \varDelta_{11} \), \( \bar{F}_{11} < \bar{F}_{12} < \bar{F}_{13} < \bar{F}_{14} \); when \( \varDelta_{11} < \varDelta < \varDelta_{12} \), \( \bar{F}_{11} < \bar{F}_{13} < \bar{F}_{12} < \bar{F}_{14} \); when \( \varDelta_{12} < \varDelta < \varDelta_{13} \), \( \bar{F}_{13} < \bar{F}_{11} < \bar{F}_{14} < \bar{F}_{12} \); when \( \varDelta > \varDelta_{13} \), \( \bar{F}_{13} < \bar{F}_{14} < \bar{F}_{11} < \bar{F}_{12} \).

In the region of \( \frac{{7 - \sqrt {41} }}{2} < \theta < \frac{{5 - \sqrt {17} }}{2} \): when \( \varDelta < \varDelta_{11} \), \( \bar{F}_{11} < \bar{F}_{12} < \bar{F}_{13} < \bar{F}_{14} \); when \( \varDelta_{11} < \varDelta < \varDelta_{12} \), \( \bar{F}_{11} < \bar{F}_{13} < \bar{F}_{12} < \bar{F}_{14} \); when \( \varDelta > \varDelta_{12} \), \( \bar{F}_{13} < \bar{F}_{11} < \bar{F}_{14} < \bar{F}_{12} \).

In the region of \( \theta > \frac{{5 - \sqrt {17} }}{2} \): when \( \varDelta < \varDelta_{11} \), \( \bar{F}_{11} < \bar{F}_{12} < \bar{F}_{13} < \bar{F}_{14} \), when \( \varDelta > \varDelta_{11} \), \( \bar{F}_{11} < \bar{F}_{13} < \bar{F}_{12} < \bar{F}_{14} \).

In conclusion, we obtain the results in Table 2.

For supplier 1, the benefit from certification can be denoted as \( \pi_{s1}^{*} \left( {{\upzeta }_{1} = {\upzeta }_{2} = 1} \right) - \pi_{s1}^{*} \left( {{\upzeta }_{1} = {\upzeta }_{2} = 0} \right) = F_{1} \left( \varDelta \right) \triangleq \frac{{\varDelta \left( {4 + \varDelta } \right)\left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)^{2} }} - F \). For supplier 2, the benefit from certification can be denoted as \( \pi_{s2}^{*} \left( {{\upzeta }_{1} = {\upzeta }_{2} = 1} \right) - \pi_{s2}^{*} \left( {{\upzeta }_{1} = {\upzeta }_{2} = 0} \right) = F_{2} \left( \varDelta \right) \triangleq \frac{{\varDelta \left( {1 - \theta } \right)\left( {\varDelta + \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }} - F \). When \( F > \hbox{max} \left\{ {\frac{{\varDelta \left( {4 + \varDelta } \right)\left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)^{2} }},\frac{{\varDelta \left( {1 - \theta } \right)\left( {\varDelta + \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }}} \right\} = \frac{{\varDelta \left( {1 - \theta } \right)\left( {\varDelta + \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }} \) in the 1-1 strategy, both suppliers will fall into the prisoner’s dilemma. In Cases (3)–(7), both suppliers will both certify the product when \( F < \bar{F}_{13} \). Since \( \bar{F}_{13} - \frac{{\varDelta \left( {1 - \theta } \right)\left( {\varDelta + \theta } \right)}}{{\left( {4 - \theta } \right)^{2} \theta }} = \frac{{\varDelta \left( {4\left( {1 - \theta } \right)\theta + \varDelta \left( { - 4 + \left( {4 - \theta } \right)\left( {2 - \theta } \right)\theta } \right)} \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \), if \( \varDelta < \frac{{4\left( {1 - \theta } \right)\theta }}{{4 - \left( {4 - \theta } \right)\left( {2 - \theta } \right)\theta }} \), we get that both suppliers will fall into the prisoner’s dilemma if they reach 1-1 equilibrium in Cases (3)–(7). Since \( \bar{F}_{21} - F_{2} \left( \varDelta \right) - F = \frac{{\left( {1 - \theta } \right)\theta }}{{4\left( { - 4 + \theta } \right)^{2} }} > 0 \), we get that both suppliers will fall into the prisoner’s dilemma if they reach 1-1 equilibrium in Cases (8) and (10). In Cases (1) and (2), both suppliers will certify the product when \( F < \bar{F}_{11} \). Since \( \bar{F}_{11} - F_{2} \left( \varDelta \right) - F = \frac{{\varDelta \theta \left( {2 - \varDelta - 2\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} > 0 \), we get that both suppliers will fall into the prisoner’s dilemma if they reach 1-1 equilibrium in Cases (1) and (2). In Case (9), both suppliers will certify the product when \( F < \bar{F}_{33} \). Since \( \bar{F}_{33} - F_{2} \left( \varDelta \right) - F = \frac{{\left( {1 - \theta } \right)\left( {\varDelta^{2} \left( { - 4 + \theta } \right) + 4\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \theta }} \), if \( \varDelta < 2\sqrt {\frac{\theta }{4 - \theta }} \), we get that both suppliers will fall into the prisoner’s dilemma if they reach 1-1 equilibrium in Case (9).

Proof of Proposition 5

We then consider the condition that \( 1 - \theta < \varDelta \le { \hbox{min} }\left\{ {2 - 2\theta ,1} \right\} \); the retailer will only procure the products from supplier 1 in the certification–no-certification scenario. By equating \( \pi_{s2yy}^{*} \) and \( \pi_{s2yn}^{*} \), we get the threshold certification cost \( \bar{F}_{21} = \frac{{\left( {2\varDelta + \theta } \right)^{2} \left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \theta }} \); by equating \( \pi_{s2ny}^{*} \) and \( \pi_{s2nn}^{*} \), we get \( \bar{F}_{12} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta } \right)}}{{4\left( { - 4 + \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \); by equating \( \pi_{s1yy}^{*} \) and \( \pi_{s1ny}^{*} \), we get \( \bar{F}_{13} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {4 - \left( {4 + \varDelta } \right)\theta } \right)}}{{4\left( { - 4 + \theta } \right)^{2} \left( {1 - \theta } \right)}} \); by equating \( \pi_{s1yn}^{*} \) and \( \pi_{s1nn}^{*} \), we get \( \bar{F}_{22} = \frac{{\left( {1 + \Delta } \right)^{2} }}{16} - \frac{{\left( {1 - \theta } \right)}}{{\left( {4 - \theta } \right)^{2} }} \).

When \( 1 - \theta < \varDelta \le { \hbox{min} }\left\{ {2 - 2\theta ,1} \right\} \), we get that:

\( \bar{F}_{13} - \bar{F}_{22} = \frac{{ - 2\varDelta \left( {1 - \theta } \right)\theta^{2} - \left( {1 - \theta } \right)\theta \left( {8 + \theta } \right) + \varDelta^{2} \left( { - 16 + \theta \left( {16 + \left( { - 5 + \theta } \right)\theta } \right)} \right)}}{{16\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} < 0 \),

\( \bar{F}_{21} - \bar{F}_{12} = \frac{{\varDelta^{2} \left( {4 - 3\theta } \right) + 2\varDelta \left( {1 - \theta } \right)\theta - \left( {1 - \theta } \right)^{2} \theta }}{{4\left( {4 - \theta } \right)^{2} \left( { - 1 + \theta } \right)}} < 0 \) and \( \frac{{\bar{F}_{12} }}{{\bar{F}_{13} }} = \frac{{\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta }}{{4\theta - \left( {4 + \varDelta } \right)\theta^{2} }} > 1 \).

Since \( \frac{{\bar{F}_{12} }}{{\bar{F}_{22} }} = \frac{{4\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta } \right)}}{{\left( {1 + \varDelta } \right)^{2} \left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta - 16\theta \left( {1 - \theta } \right)^{2} }} \), we let \( F_{11} \left( {\theta ,\varDelta } \right) = 4\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - \theta } \right) + 2\left( {1 - \theta } \right)\theta } \right) - \left( {1 + \varDelta } \right)^{2} \left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta + 16\theta \left( {1 - \theta } \right)^{2} \), \( \theta_{21} \approx 0.39 \) and satisfies \( F_{11} \left( {\theta_{21} ,\varDelta = 1 - \theta_{21} } \right) = 0 \), \( \theta_{22} \approx 0.5803 \) and satisfies \( F_{11} \left( {\theta_{22} ,\varDelta = 2 - 2\theta_{22} } \right) = 0 \), \( F_{11} \left( {\theta ,\varDelta = 1} \right) > 0 \), when \( \theta > \theta_{22} \), \( \bar{F}_{12} < \bar{F}_{22} \), when \( \theta < \theta_{21} \), \( \bar{F}_{12} > \bar{F}_{22} \), when \( \theta_{21} < \theta < \theta_{22} \), there exists \( F_{11} \left( {\theta ,\varDelta_{21} } \right) = 0 \) and satisfies \( \varDelta_{21} = \frac{{\left( {1 - \theta } \right)\theta \left( {8 - \left( {4 - \theta } \right)\theta } \right) + 2\sqrt {\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta^{2} \left( {12 - \left( {4 - \theta } \right)\theta \left( {5 - 2\theta } \right)} \right)} }}{{16 - \left( {4 - \theta } \right)\theta \left( {8 - \left( {5 - \theta } \right)\theta } \right)}} \), if \( \varDelta < \varDelta_{21} \), \( \bar{F}_{12} < \bar{F}_{22} \), else, \( \bar{F}_{12} > \bar{F}_{22} \).

Since \( \bar{F}_{13} - \bar{F}_{21} = \frac{{ - \left( {1 - \theta } \right)^{2} \left( {2\varDelta + \theta } \right)^{2} - \varDelta \left( {2 - \theta } \right)\theta \left( { - 4 + \left( {4 + \varDelta } \right)\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \theta \left( {1 - \theta } \right)}} \), we let \( F_{12} \left( {\theta ,\varDelta } \right) = - \left( {1 - \theta } \right)^{2} \left( {2\varDelta + \theta } \right)^{2} - \varDelta \left( {2 - \theta } \right)\theta \left( { - 4 + \left( {4 + \varDelta } \right)\theta } \right) \), and satisfies \( F_{12} \left( {\frac{{5 - \sqrt {17} }}{2},\varDelta = 1 - \theta } \right) = 0 \), \( F_{12} \left( {\frac{{9 - \sqrt {17} }}{8},\varDelta = 2 - 2\theta } \right) = 0 \), when \( \theta > \frac{{9 - \sqrt {17} }}{8} \), \( \bar{F}_{13} > \bar{F}_{21} \), when \( \theta < \frac{{5 - \sqrt {17} }}{2} \), \( \bar{F}_{13} < \bar{F}_{21} \), when \( \frac{{5 - \sqrt {17} }}{2} < \theta < \frac{{9 - \sqrt {17} }}{8} \), there exists \( \varDelta_{22} = \frac{{ - 2\left( {1 - \theta } \right)\theta - \sqrt {\left( {4 - \theta } \right)\left( {2 - \theta } \right)\left( {1 - \theta } \right)^{2} \theta^{3} } }}{{ - 4 + \left( {4 - \theta } \right)\left( {2 - \theta } \right)\theta }} \), if \( \varDelta < \varDelta_{22} \), \( \bar{F}_{13} > \bar{F}_{21} \), else, \( \bar{F}_{13} < \bar{F}_{21} \).

Since \( \bar{F}_{21} - \bar{F}_{22} = \frac{{4\left( {2\varDelta + \theta } \right)^{2} \left( {1 - \theta } \right) - \left( {4 - \theta } \right)^{2} \theta \left( {1 + \varDelta } \right)^{2} + 16\theta \left( {1 - \theta } \right)}}{{16\left( {4 - \theta } \right)^{2} \theta }} \), we let \( F_{13} \left( {\theta ,\varDelta } \right) = 4\left( {2\varDelta + \theta } \right)^{2} \left( {1 - \theta } \right) - \left( {4 - \theta } \right)^{2} \theta \left( {1 + \varDelta } \right)^{2} + 16\theta \left( {1 - \theta } \right) \), \( \theta_{23} \approx 0.288 \) and satisfies \( F_{13} \left( {\theta_{23} ,\varDelta = 1 - \theta_{23} } \right) = 0 \), \( \theta_{24} \approx 0.336 \) and satisfies \( F_{13} \left( {\theta_{24} ,\varDelta = 1} \right) = 0 \), when \( \theta > \theta_{24} \), \( \bar{F}_{21} < \bar{F}_{22} \), when \( \theta < \theta_{23} \), \( \bar{F}_{21} > \bar{F}_{22} \), when \( \theta_{23} < \theta < \theta_{24} \), there exists \( F_{13} \left( {\theta ,\varDelta_{23} } \right) = 0 \) and satisfies \( \varDelta_{23} = - \frac{{8\theta + \theta^{3} + 2\theta \sqrt {\left( {1 - \theta } \right)\left( {32 + \theta \left( {20 - \left( {8 - \theta } \right)\theta } \right)} \right)} }}{{ - 16 + \theta \left( {32 - \left( {8 - \theta } \right)\theta } \right)}} \), if \( \varDelta < \varDelta_{23} \), \( \bar{F}_{21} < \bar{F}_{22} \), else, \( \bar{F}_{21} > \bar{F}_{22} \).

In conclusion, we obtain the results in Table 3.

We then consider the condition that \( 2 - 2\theta < \Delta \le 1 \cap \theta > \frac{1}{2} \), thus, when in the certification–no-certification scenario, the retailer will only procure the products from supplier 1; when in the no-certification–certification scenario, the retailer will only procure the products from supplier 2.

By equating \( \pi_{s2yy}^{*} \) and \( \pi_{s2yn}^{*} \), we get the threshold certification cost \( \bar{F}_{21} = \frac{{\left( {2\varDelta + \theta } \right)^{2} \left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \theta }} \); by equating \( \pi_{s2ny}^{*} \) and \( \pi_{s2nn}^{*} \), we get \( \bar{F}_{34} = \frac{{\left( {\theta + \Delta } \right)^{2} }}{16\theta } - \frac{{\theta \left( {1 - \theta } \right)}}{{4\left( { - 4 + \theta } \right)^{2} }} \); by equating \( \pi_{s1yy}^{*} \) and \( \pi_{s1ny}^{*} \), we get \( \bar{F}_{33} = \frac{{\left( {1 - \theta } \right)\left( {\varDelta + 2} \right)^{2} }}{{4\left( {4 - \theta } \right)^{2} }} \); by equating \( \pi_{s1yn}^{*} \) and \( \pi_{s1nn}^{*} \), we get \( \bar{F}_{22} = \frac{{\left( {1 + \varDelta } \right)^{2} }}{16} - \frac{1 - \theta }{{\left( {4 - \theta } \right)^{2} }} \). Then, we get \( \bar{F}_{21} - \bar{F}_{34} = \frac{ - \theta }{{16\left( {4 - \theta } \right)^{2} \theta }}\left( {8\theta + \theta^{3} + \varDelta^{2} \left( {8 + \theta } \right) + 2\varDelta \left( {8 + \theta^{2} } \right)} \right) < 0 \), \( \bar{F}_{33} - \bar{F}_{22} = \frac{{16 - 4\varDelta \left( {4 + 3\varDelta } \right) - 24\theta + 4\varDelta^{2} \theta - \left( {1 + \varDelta } \right)^{2} \theta^{2} }}{{16\left( {4 - \theta } \right)^{2} }} < 0 \). Since \( \bar{F}_{21} - \bar{F}_{33} = \frac{{\left( {\varDelta^{2} - \theta } \right)\left( {4 - \theta } \right)\left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \theta }} \) , thus if \( \varDelta < \sqrt \theta \), \( \bar{F}_{21} < \bar{F}_{33} \); if \( \varDelta > \sqrt \theta \), \( \bar{F}_{21} > \bar{F}_{33} \). \( \bar{F}_{21} - \bar{F}_{22} = \frac{{ - \left( {1 + \varDelta } \right)^{2} \left( {4 - \theta } \right)^{2} \theta + 16\left( {1 - \theta } \right)\theta + 4\left( {1 - \theta } \right)\left( {2\varDelta + \theta } \right)^{2} }}{{16\theta \left( {4 - \theta } \right)^{2} }} < 0 \), \( \bar{F}_{34} - \bar{F}_{22} = \frac{{\left( {1 - \theta } \right)\left( {\varDelta^{2} \left( {4 - \theta } \right) + \theta^{2} } \right)}}{{16\theta \left( {4 - \theta } \right)}} > 0 \). Thus, we get the results in Table 4.

Proof of Proposition 6

When both suppliers certify the product, we get that \( \pi_{s1}^{*} - \pi_{s2}^{*} = \frac{{\left( {1 - \theta } \right)\left( { - \varDelta^{2} + \theta } \right)}}{{4\left( {4 - \theta } \right)\theta }} \), if \( \varDelta < \sqrt \theta \), \( \pi_{s1}^{*} > \pi_{s2}^{*} \); if \( \varDelta > \sqrt \theta \), \( \pi_{s1}^{*} < \pi_{s2}^{*} \). When neither supplier certifies the product, we get that \( \pi_{s1}^{*} - \pi_{s2}^{*} = \frac{1 - \theta }{{4\left( {4 - \theta } \right)}} > 0 \). To realize \( \pi_{s1}^{*} < \pi_{s2}^{*} \), the condition \( \theta < \frac{3 - \sqrt 5 }{2} \) and \( \sqrt \theta < \Delta < 1 - \theta \) must be satisfied. We find \( \varDelta_{11} < \varDelta_{12} < \sqrt \theta \), but there exists \( \theta_{31} \) satisfying \( \varDelta_{13} \left( {\theta_{31} } \right) = \sqrt {\theta_{31} } \), \( \theta_{31} \approx 0.263 \),\( \varDelta_{13} > \sqrt \theta \) if \( \theta_{31} < \theta < \frac{{7 - \sqrt {41} }}{2} \). Thus, if the two suppliers reach 1-1 equilibrium, supplier 2 may obtain more profits than supplier 1 if \( \theta < \frac{{7 - \sqrt {41} }}{2} \) in Cases (3) and (4), and if \( \frac{{7 - \sqrt {41} }}{2} < \theta < \frac{{5 - \sqrt {17} }}{2} \) in Case (3). When \( \bar{F}_{13} < F < \bar{F}_{12} \). in Cases (2)–(4), the two suppliers achieve 0–1 equilibrium, we get \( \pi_{s1}^{*} - \pi_{s2}^{*} = F - \frac{{\varDelta^{2} + 2\varDelta \theta - \theta \left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)\theta }} \). Since \( f_{6} \left( \Delta \right) = \frac{{\varDelta^{2} + 2\varDelta \theta - \theta \left( {1 - \theta } \right)}}{{4\left( {4 - \theta } \right)\theta }} - \bar{F}_{13} = \frac{1}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }}\left( {\left( { - 4 + \theta } \right)\left( {1 - \theta } \right)^{2} \theta - 2\varDelta \left( {1 - \theta } \right)\theta^{2} + \varDelta^{2} \left( {4 - \theta \left( {5 - \left( {3 - \theta } \right)\theta } \right)} \right)} \right) \), if \( f_{6} \left( \Delta \right) > 0 \), we get \( \pi_{s1}^{*} < \pi_{s2}^{*} \) in a 0–1 equilibrium. \( f_{6} \left( {\theta_{32} ,\Delta = 1 - \theta_{32} } \right) = 0 \), \( \theta_{32} \approx 0.484 \), if \( \theta > \theta_{32} \), \( f_{6} \left( {\Delta = 1 - \theta } \right) < 0 \), thus, \( f_{6} \left( \Delta \right) < 0 \). \( f_{6} \left( {\Delta = \varDelta_{11} } \right) < 0 \), \( f_{6} \left( {\theta_{33} ,\Delta = \varDelta_{12} } \right) = 0 \), \( \theta_{33} \approx 0.403 \), if \( \theta > \theta_{33} \), \( f_{6} \left( {\Delta = \varDelta_{12} } \right) > 0 \), else, \( f_{6} \left( {\Delta = \varDelta_{12} } \right) < 0 \). \( f_{6} \left( {\theta_{34} ,\Delta = \varDelta_{13} } \right) = 0 \), \( \theta_{34} \approx 0.243 \), if \( \theta > \theta_{34} \), \( f_{6} \left( {\Delta = \varDelta_{13} } \right) > 0 \), else, \( f_{6} \left( {\Delta = \varDelta_{13} } \right) < 0 \). Thus, we get there exists \( \theta \) satisfying \( \pi_{s1}^{*} < \pi_{s2}^{*} \) if \( \theta < \frac{{7 - \sqrt {41} }}{2} \) in Cases (3) and (4), \( \frac{{7 - \sqrt {41} }}{2} < \theta < \frac{{5 - \sqrt {17} }}{2} \) in Cases (2) and (3) and if \( \frac{{5 - \sqrt {17} }}{2} < \theta < \theta_{32} \) in Case (2). When \( \bar{F}_{11} < F < \bar{F}_{13} \) in Cases (1)–(3), the two suppliers achieve 1-0 equilibrium, we get \( \pi_{s1}^{*} - \pi_{s2}^{*} = \frac{{\left( {1 + \varDelta } \right)^{2} - \theta }}{{4\left( {4 - \theta } \right)}} - F \). Since \( f_{7} \left( \Delta \right) = \bar{F}_{13} - \frac{{\left( {1 + \varDelta } \right)^{2} - \theta }}{{4\left( {4 - \theta } \right)}} = \frac{1}{{4\left( {4 - \theta } \right)^{2} \left( { - 1 + \theta } \right)}}\left( {\varDelta^{2} \left( {4 - 3\theta } \right) + \left( {4 - \theta } \right)\left( {1 - \theta } \right)^{2} + 2\varDelta \left( {1 - \theta } \right)\theta } \right) < 0 \), thus, \( \pi_{s1}^{*} > \pi_{s2}^{*} \).

Appendix 4: The equilibrium certification strategy

Case (1) \( \bar{F}_{11} < \bar{F}_{12} < \bar{F}_{13} < \bar{F}_{14} \)

If \( F \le \bar{F}_{11} \), supplier 1(2) always chooses certification regardless of the choice of supplier 2(1); thus, they will reach the certification–certification Nash equilibrium. To simplify the exposition, we denote the equilibrium as 1(dominant)-1(dominant); if \( \bar{F}_{11} < F \le \bar{F}_{12} \), supplier 1 always chooses certification regardless of the choice of supplier 2, and supplier 2 will choose no certification if supplier 1 chooses certification; thus, they will reach the certification–no-certification Nash equilibrium, we denote the equilibrium as 1(dominant)-0. If \( \bar{F}_{12} < F \le \bar{F}_{13} \), they will reach 1(dominant)-0 (dominant) Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{14} \), they will reach 1-0(dominant) Nash equilibrium; if \( F > \bar{F}_{14} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (2) \( \bar{F}_{11} < \bar{F}_{13} < \bar{F}_{12} < \bar{F}_{14} \)

If \( F \le \bar{F}_{11} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{11} < F \le \bar{F}_{13} \), they will reach 1(dominant)-0 Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{12} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{12} < F \le \bar{F}_{14} \), they will reach 1-0 (dominant) Nash equilibrium; if \( F > \bar{F}_{14} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (3) \( \bar{F}_{13} < \bar{F}_{11} < \bar{F}_{14} < \bar{F}_{12} \)

If \( F \le \bar{F}_{13} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{11} \), they will reach 0–1(dominant) Nash equilibrium; if \( \bar{F}_{11} < F \le \bar{F}_{14} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{14} < F \le \bar{F}_{12} \), they will reach 0 (dominant)-1 Nash equilibrium; if \( F > \bar{F}_{12} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (4) \( \bar{F}_{13} < \bar{F}_{14} < \bar{F}_{11} < \bar{F}_{12} \)

If \( F \le \bar{F}_{13} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{14} \), they will reach 0–1(dominant) Nash equilibrium; if \( \bar{F}_{14} < F \le \bar{F}_{11} \), they will reach 0(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{11} < F \le \bar{F}_{12} \), they will reach 0(dominant)-1 Nash equilibrium; if \( F > \bar{F}_{12} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (5) \( \bar{F}_{13} < \bar{F}_{22} < \bar{F}_{21} < \bar{F}_{12} \)

If \( F \le \bar{F}_{13} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{22} \), they will reach 0–1(dominant) Nash equilibrium; if \( \bar{F}_{22} < F \le \bar{F}_{21} \), they will reach 0(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{21} < F \le \bar{F}_{12} \), they will reach 0 (dominant)-1 Nash equilibrium; if \( F > \bar{F}_{12} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (6) \( \bar{F}_{13} < \bar{F}_{21} < \bar{F}_{22} < \bar{F}_{12} \)

If \( F \le \bar{F}_{13} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{21} \), they will reach 0–1(dominant) Nash equilibrium; if \( \bar{F}_{21} < F \le \bar{F}_{22} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{22} < F \le \bar{F}_{12} \), they will reach 0 (dominant)-1 Nash equilibrium; if \( F > \bar{F}_{12} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (7) \( \bar{F}_{13} < \bar{F}_{21} < \bar{F}_{12} < \bar{F}_{22} \)

If \( F \le \bar{F}_{13} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{21} \), they will reach 0–1(dominant) Nash equilibrium; if \( \bar{F}_{21} < F \le \bar{F}_{12} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{12} < F \le \bar{F}_{22} \), they will reach 1-0 (dominant) Nash equilibrium; if \( F > \bar{F}_{22} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (8) \( \bar{F}_{21} < \bar{F}_{13} < \bar{F}_{12} < \bar{F}_{22} \)

If \( F \le \bar{F}_{21} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{21} < F \le \bar{F}_{13} \), they will reach 1(dominant)-0 Nash equilibrium; if \( \bar{F}_{13} < F \le \bar{F}_{12} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{12} < F \le \bar{F}_{22} \), they will reach 1-0 (dominant) Nash equilibrium; if \( F > \bar{F}_{22} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (9) \( \bar{F}_{33} < \bar{F}_{21} < \bar{F}_{22} < \bar{F}_{34} \)

If \( F \le \bar{F}_{33} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{33} < F \le \bar{F}_{21} \), they will reach 0–1(dominant) Nash equilibrium; if \( \bar{F}_{21} < F \le \bar{F}_{22} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{22} < F \le \bar{F}_{34} \), they will reach 0 (dominant)-1 Nash equilibrium; if \( F > \bar{F}_{34} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Case (10) \( \bar{F}_{21} < \bar{F}_{33} < \bar{F}_{22} < \bar{F}_{34} \)

If \( F \le \bar{F}_{21} \), they will reach 1(dominant)-1(dominant) Nash equilibrium; if \( \bar{F}_{21} < F \le \bar{F}_{33} \), they will reach 1(dominant)-0 Nash equilibrium; if \( \bar{F}_{33} < F \le \bar{F}_{22} \), they will reach 1–0 or 0–1 Nash equilibrium; if \( \bar{F}_{22} < F \le \bar{F}_{34} \), they will reach 0 (dominant)-1 Nash equilibrium; if \( F > \bar{F}_{34} \), they will reach 0(dominant)-0(dominant) Nash equilibrium.

Each of the cases above can be divided into 5 parts with the increase of \( F \); we denote five parts in each case as the first part, second part–fifth part, respectively, showing that the two suppliers will reach 1-1 equilibrium in the first part, and reach 0-0 equilibrium in the fifth part.

Appendix 5: The certification and pricing decisions, considering production cost

We incorporate the production cost into the model, and analyze the certification and pricing decisions in a simultaneous game. We mainly focus on the condition when the retailer will always procure two products regardless of their certification strategy.

When \( \frac{{p_{2} - \upzeta_{2} \Delta }}{{p_{1} - \upzeta_{1} \Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {\upzeta_{1} - \upzeta_{2} } \right)\Delta \), we get the optimal pricing decisions,

$$ \begin{aligned} m_{1}^{*} & = \frac{1}{2}\left( {1 - c + \varDelta \zeta_{1} } \right), \\ m_{2}^{*} & = \frac{1}{2}\left( {\theta + \varDelta \zeta_{2} - c} \right), \\ w_{1}^{*} & = \frac{{2 + 7c - \left( {2 + c} \right)\theta + \varDelta \left( {2 - \theta } \right)\zeta_{1} - \varDelta \zeta_{2} }}{{2\left( {4 - \theta } \right)}}, \\ w_{2}^{*} & = \frac{{6c + \left( {1 - \theta } \right)\theta - \varDelta \theta \zeta_{1} + \varDelta \left( {2 - \theta } \right)\zeta_{2} }}{{2\left( {4 - \theta } \right)}}, \\ p_{1}^{*} & = \frac{{6 + 3c - 3\theta + 2\varDelta \left( {3 - \theta } \right)\zeta_{1} - \varDelta \zeta_{2} }}{{2\left( {4 - \theta } \right)}}, \\ p_{2}^{*} & = \frac{{c\left( {2 + \theta } \right) + \theta \left( {5 - 2\theta } \right) - \varDelta \theta \zeta_{1} + 2\varDelta \left( {3 - \theta } \right)\zeta_{2} }}{{2\left( {4 - \theta } \right)}}, \\ \pi_{s1}^{*} & = \frac{{\left( {\left( {2 - c} \right)\left( {1 - \theta } \right) + \varDelta \left( {2 - \theta } \right)\zeta_{1} - \varDelta \zeta_{2} } \right)^{2} }}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} - \upzeta_{1} F, \\ \pi_{s2}^{*} & = \frac{{\left( {\left( {2c - \theta } \right)\left( {1 - \theta } \right) + \varDelta \theta \zeta_{1} - \varDelta \left( {2 - \theta } \right)\zeta_{2} } \right)^{2} }}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} - \upzeta_{2} F, \\ \pi_{r}^{*} & = \frac{1}{{4\left( {4 - \theta } \right)\left( {1 - \theta } \right)\theta }}\left( {\left( {1 - \theta } \right)\left( {\left( {c^{2} + \theta } \right)\left( {2 + \theta } \right) - 6c\theta } \right) + \varDelta^{2} \left( {2 - \theta } \right)\theta \zeta_{1}^{2} + 2\varDelta \left( {1 - \theta } \right)\left( {\theta - 2c} \right)\zeta_{2} } \right. \\ & \quad \quad \left. { + \varDelta^{2} \left( {2 - \theta } \right)\zeta_{2}^{2} + 2\varDelta \theta \zeta_{1} \left( {\left( {2 - c} \right)\left( {1 - \theta } \right) - \varDelta \zeta_{2} } \right)} \right). \\ \end{aligned} $$

After substituting \( p_{1}^{ *} \) and \( p_{2}^{ *} \) into the constraint \( \frac{{p_{2} - \upzeta_{2} \Delta }}{{p_{1} - \upzeta_{1} \Delta }} \le \theta \le 1 - p_{1} + p_{2} + \left( {\upzeta_{1} - \upzeta_{2} } \right)\Delta \), we get the following conditions under which the retailer will simultaneously procure two products.

In scenario 1, if \( c \le \frac{2\varDelta + \theta }{2} \), the retailer will procure two products simultaneously, otherwise, he will only procure product 1; in scenario II, if \( c \le \frac{{\theta \left( {1 - \varDelta - \theta } \right)}}{{2\left( {1 - \theta } \right)}} \), the retailer will procure two products simultaneously, otherwise, he will only procure product 1; in scenario III, if \( \varDelta \ge 1 - \theta \) and \( c \le \frac{{2\left( {2 - \varDelta - 2\theta } \right)}}{{2\left( {1 - \theta } \right)}} \), the retailer will procure two products simultaneously, otherwise, he will only procure product 2; if \( \varDelta \le 1 - \theta \) and \( c \le \frac{{2\varDelta + \theta - \theta \left( {\varDelta + \theta } \right)}}{{2\left( {1 - \theta } \right)}} \), the retailer will procure two products simultaneously, otherwise, he will only procure product 1; in scenario IV, if \( c \le \frac{\theta }{2} \), the retailer will procure two products simultaneously, otherwise, he will only procure product 1. We mainly focus on the condition of \( \varDelta \le 1 - \theta - \frac{{2\left( {1 - \theta } \right)c}}{\theta } \), and we get \( c \le \frac{\theta }{2} \) according to \( 1 - \theta - \frac{{2\left( {1 - \theta } \right)c}}{\theta } \ge 0 \).

For supplier 2, given that supplier 1 adopts certification, supplier 2 adopts certification if \( F \le \bar{F}_{41} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - 3\theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)} \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \), otherwise no certification; given that supplier 1 adopts no certification, supplier 2 adopts certification if \( F \le \bar{F}_{42} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - \theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)} \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \), otherwise no certification. For supplier 1, given that supplier 2 adopts certification, supplier 1 adopts certification if \( F \le \bar{F}_{43} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {4 - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}}{{4\left( { - 4 + \theta } \right)^{2} \left( {1 - \theta } \right)}} \), otherwise no certification; given that supplier 2 adopts no certification, supplier 1 adopts certification if

\( F \le \bar{F}_{44} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {2\left( {2 + \varDelta } \right) - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)}} \), otherwise no certification.

\( \frac{{\bar{F}_{41} }}{{\bar{F}_{42} }} = \frac{{\varDelta \left( {2 - 3\theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)}}{{\varDelta \left( {2 - \theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)}} < 1,\quad \frac{{\bar{F}_{43} }}{{\bar{F}_{44} }} = \frac{{4 - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta }}{{2\left( {2 + \varDelta } \right) - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta }} < 1. \) Since \( \frac{{\bar{F}_{41} }}{{\bar{F}_{44} }} = \frac{{\left( {\varDelta \left( {2 - 3\theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)} \right)}}{{\theta \left( {2\left( {2 + \varDelta } \right) - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}} \), we let \( F_{41} \left( {\theta ,\varDelta } \right) = \varDelta \left( {2 - 3\theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right) - \theta \left( {2\left( {2 + \varDelta } \right) - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right) \). Since \( \frac{{\bar{F}_{42} }}{{\bar{F}_{43} }} = \frac{{\varDelta \left( {2 - \theta } \right)\left( {\varDelta \left( {2 - \theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)} \right)}}{{4\left( {4 - \theta } \right)^{2} \left( {1 - \theta } \right)\theta }} \), we let \( F_{42} \left( {\theta ,\varDelta } \right) = \varDelta \left( {2 - \theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right) - \theta \left( {4 - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right) \). Since \( \frac{{\bar{F}_{41} }}{{\bar{F}_{43} }} = \frac{{\left( {\varDelta \left( {2 - 3\theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)} \right)}}{{\theta \left( {4 - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}} \) and \( \frac{{\bar{F}_{42} }}{{\bar{F}_{44} }} = \frac{{\left( {\varDelta \left( {2 - \theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right)} \right)}}{{\theta \left( {2\left( {2 + \varDelta } \right) - 2c\left( {1 - \theta } \right) - \left( {4 + \varDelta } \right)\theta } \right)}} \), we let \( F_{43} \left( {\theta ,\varDelta } \right) = \varDelta \left( {2 - 3\theta } \right) + \left( {2\theta - 4c} \right)\left( {1 - \theta } \right) \), we let \( F_{41} \left( {\theta ,1 - \theta - \frac{{2\left( {1 - \theta } \right)c_{1} }}{\theta }} \right) = 0 \) and \( c_{1} = \frac{{\theta \left( {\theta^{2} - 7\theta + 2} \right)}}{4 - 6\theta } \); \( F_{42} \left( {\theta ,1 - \theta - \frac{{2\left( {1 - \theta } \right)c_{2} }}{\theta }} \right) = 0 \) and \( c_{2} = \frac{{\theta \left( {2 - \theta } \right)\left( {1 - \theta } \right)}}{{2\left( {2 + \theta } \right)}} \); \( F_{43} \left( {\theta ,1 - \theta - \frac{{2\left( {1 - \theta } \right)c_{3} }}{\theta }} \right) = 0 \) and \( c_{3} = \frac{{\theta \left( {\theta^{2} - 5\theta + 2} \right)}}{{2\left( {2 - \theta } \right)}} \); \( F_{41} \left( {\theta ,\varDelta_{41} } \right) = 0 \) and \( \varDelta_{41} = \frac{{2\left( {c\left( {2 - \theta } \right) + \theta } \right)\left( {1 - \theta } \right)}}{{2 - \left( {1 - \theta } \right)\theta }} \); \( F_{42} \left( {\theta ,\varDelta_{42} } \right) = 0 \) and \( \varDelta_{42} = 2c + \frac{2\theta }{2 - \theta } \); \( F_{43} \left( {\theta ,\varDelta_{43} } \right) = 0 \) and \( \varDelta_{43} = \frac{{2\left( {c\left( {2 - \theta } \right) + \theta } \right)\left( {1 - \theta } \right)}}{{2 - \left( {5 - \theta } \right)\theta }} \), \( \varDelta_{41} < \varDelta_{42} < \varDelta_{43} \), then, we get Table 5.

Table 5 The organic certification strategy when \( \varDelta \le 1 - \theta - \frac{{2\left( {1 - \theta } \right)c}}{\theta } \)

(11) \( \bar{F}_{41} < \bar{F}_{42} < \bar{F}_{43} < \bar{F}_{44} \), the certification strategy here is similar to that in Case (1); (12) \( \bar{F}_{41} < \bar{F}_{43} < \bar{F}_{42} < \bar{F}_{44} \), the certification strategy here is similar to that in Case (2); (13) \( \bar{F}_{43} < \bar{F}_{41} < \bar{F}_{44} < \bar{F}_{12} \), the certification strategy here is similar to that in Case (3); (14) \( \bar{F}_{13} < \bar{F}_{14} < \bar{F}_{11} < \bar{F}_{12} \), the certification strategy here is similar to that in Case (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., He, Y., Zhao, X. et al. Certify or not? An analysis of organic food supply chain with competing suppliers. Ann Oper Res 314, 645–675 (2022). https://doi.org/10.1007/s10479-019-03465-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03465-y

Keywords

Navigation