Skip to main content
Log in

Option pricing and coordination in the fresh produce supply chain with portfolio contracts

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies a fresh produce supply chain that consists of a supplier and a retailer in a newsvendor framework. The supplier is the Stackelberg leader and the retailer is the follower. The retailer can obtain products from the supplier by wholesale price and call option portfolio contracts. The fresh produce incurs a circulation loss in quantity during its transportation. The retailer’s optimal ordering policy and the supplier’s optimal pricing policy are derived in the presence of portfolio contracts and circulation loss. It is demonstrated that, as the prices of option increase toward their optimal, the supplier’s expected profit increases whereas the retailer’s expected profit decreases, and the retailer is more sensitive to the price change. It is also found that the fresh produce supply chain can be coordinated by the portfolio contracts, and Pareto improvement for both chain members can also be achieved as compared with the non-coordinated contracts. However, when the supply chain is coordinated, the supplier cannot realize its optimal pricing strategy. Finally, it is shown that the supplier’s optimal option pricing policy is independent to the demand risk and wholesale price, and the circulation loss of fresh produce increases the management risks of the fresh produce supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1–20.

    Article  Google Scholar 

  • Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863–904.

    Article  Google Scholar 

  • Bagnoli, M., & Bergstrom, T. (2005). Log-concave probability and its applications. Economic Theory, 26(2), 445–469.

    Article  Google Scholar 

  • Barnes-Schuster, D., Bassok, Y., & Anupindi, R. (2002). Coordination and flexibility in supply contracts with options. Manufacturing & Service Operations Management, 4(3), 171–207.

    Article  Google Scholar 

  • Blackburn, J., & Scudder, G. (2009). Supply chain strategies for perishable products: The case of fresh produce. Production and Operations Management, 18(2), 129–137.

    Article  Google Scholar 

  • Burnetas, A., & Ritchken, P. (2005). Option pricing with downward-sloping demand curves: The case of supply chain options. Management Science, 51(4), 566–580.

    Article  Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., Xu, X., & Yu, G. (2013). Fresh-product supply chain management with logistics outsourcing. Omega-International Journal of Management Science, 41(4), 752–765.

    Article  Google Scholar 

  • Chen, X., Hao, G., & Li, L. (2014). Channel coordination with a loss-averse retailer and option contracts. International Journal of Production Economics, 150, 52–57.

    Article  Google Scholar 

  • Chen, X., & Shen, Z. J. (2012). An analysis of a supply chain with options contracts and service requirements. IIE Transactions, 44(10), 805–819.

    Article  Google Scholar 

  • Chen, X., Wang, X., & Jiang, X. (2016). The impact of power structure on the retail service supply chain with an O2O mixed channel. Journal of the Operational Research Society, 67(2), 294–301.

    Article  Google Scholar 

  • Chen, X., & Wang, X. (2015). Free or bundled: Channel selection decisions under different power structures. Omega-International Journal of Management Science, 53, 11–20.

    Article  Google Scholar 

  • Cheng, F., Ettl, M., Lin, G. Y., Schwarz, M., & Yao, D. D. (2003). Flexible supply contracts via options. New York: IBM TJ Watson Research Center: Working Paper.

  • Christiansen, D. S., & Wallace, S. W. (1998). Option theory and modeling under uncertainty. Annals of Operations Research, 82(1), 59–82.

    Article  Google Scholar 

  • Fu, Q., Zhou, S. X., Chao, X., & Lee, C. Y. (2012). Combined pricing and portfolio option procurement. Production and Operations Management, 21(2), 361–377.

    Article  Google Scholar 

  • Hu, F., Lim, C. C., & Lu, Z. (2014). Optimal production and procurement decisions in a supply chain with an option contract and partial backordering under uncertainties. Applied Mathematics and Computation, 232, 1225–1234.

    Article  Google Scholar 

  • Inderfurth, K., Kelle, P., & Kleber, R. (2013). Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination. European Journal of Operational Research, 225(2), 298–309.

    Article  Google Scholar 

  • Jörnsten, K., NonĂĄs, S. L., Sandal, L., & Ubøe, J. (2012). Transfer of risk in the newsvendor model with discrete demand. Omega-International Journal of Management Science, 40(3), 404–414.

    Article  Google Scholar 

  • Karaesmen, I. Z., Scheller-Wolf, A., & Deniz, B. (2011). Managing perishable and aging inventories: Review and future research directions. In Planning production and inventories in the extended enterprise (pp. 393–436). Berlin: Springer.

  • Kleindorfer, P. R., & Wu, D. J. (2003). Integrating long-and short-term contracting via business-to-business exchanges for capital-intensive industries. Management Science, 49(11), 1597–1615.

    Article  Google Scholar 

  • Lee, C. Y., Li, X., & Xie, Y. (2013). Procurement risk management using capacitated option contracts with fixed ordering costs. IIE Transactions, 45(8), 845–864.

    Article  Google Scholar 

  • Liang, L., Wang, X., & Gao, J. (2012). An option contract pricing model of relief material supply chain. Omega-International Journal of Management Science, 40(5), 594–600.

    Article  Google Scholar 

  • Liu, G., Zhang, J., & Tang, W. (2015). Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand. Annals of Operations Research, 226(1), 397–416.

    Article  Google Scholar 

  • Lowe, T. J., & Preckel, P. V. (2004). Decision technologies for agribusiness problems: A brief review of selected literature and a call for research. Manufacturing & Service Operations Management, 6(3), 201–208.

    Article  Google Scholar 

  • Luo, J., & Chen, X. (2015). Risk hedging via option contracts in a random yield supply chain. Annals of Operations Research. doi:10.1007/s10479-015-1964-8

  • Marzban, S., Mahootchi, M., & Khamseh, A. A. (2015). Developing a multi-period robust optimization model considering American style options. Annals of Operations Research, 233(1), 305–320.

    Article  Google Scholar 

  • Nagali, V., Hwang, J., Sanghera, D., et al. (2008). Procurement risk management (PRM) at Hewlett-Packard company. Interfaces, 38(1), 51–60.

    Article  Google Scholar 

  • National Bureau of Statistics of China. (2013). National data 2013. http://data.stats.gov.cn/workspace/index?m=hgnd.

  • Nosoohi, I., & Nookabadi, A. S. (2014). Designing a supply contract to coordinate supplier’s production, considering customer oriented production. Computers & Industrial Engineering, 74, 26–36.

    Article  Google Scholar 

  • Qin, Y., Wang, J., & Wei, C. (2014). Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously. International Journal of Production Economics, 152, 42–48.

    Article  Google Scholar 

  • Shen, D., Lai, K. K., Leung, S. C., & Liang, L. (2011). Modelling and analysis of inventory replenishment for perishable agricultural products with buyer-seller collaboration. International Journal of Systems Science, 42(7), 1207–1217.

    Article  Google Scholar 

  • Shukla, M., & Jharkharia, S. (2013). Agri-fresh produce supply chain management: A state-of-the-art literature review. International Journal of Operations & Production Management, 33(2), 114–158.

    Article  Google Scholar 

  • Spinler, S., & Huchzermeier, A. (2006). The valuation of options on capacity with cost and demand uncertainty. European Journal of Operational Research, 171(3), 915–934.

    Article  Google Scholar 

  • Wu, D. J., & Kleindorfer, P. R. (2005). Competitive options, supply contracting, and electronic markets. Management Science, 51(3), 452–466.

    Article  Google Scholar 

  • Wang, C., & Chen, X. (2013). Option contracts in fresh produce supply chain with circulation loss. Journal of Industrial Engineering and Management, 6(1), 104–112.

    Google Scholar 

  • Wang, C., & Chen, X. (2015). Optimal ordering policy for a price-setting newsvendor with option contracts under demand uncertainty. International Journal of Production Research, 53(20), 6279–6293.

    Article  Google Scholar 

  • Wang, X., & Liu, L. (2007). Coordination in a retailer-led supply chain through option contract. International Journal of Production Economics, 110(1), 115–127.

    Article  Google Scholar 

  • Wu, D. J., Kleindorfer, P. R., & Zhang, J. E. (2002). Optimal bidding and contracting strategies for capital-intensive goods. European Journal of Operational Research, 137(3), 657–676.

    Article  Google Scholar 

  • Xiao, Y., & Chen, J. (2012). Supply chain management of fresh products with producer transportation. Decision Sciences, 43(5), 785–815.

    Article  Google Scholar 

  • Zhao, Y., Wang, S., Cheng, T. E., Yang, X., & Huang, Z. (2010). Coordination of supply chains by option contracts: A cooperative game theory approach. European Journal of Operational Research, 207(2), 668–675.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are supported by the National Natural Science Foundation of China (Nos. 71272128, 71301019, 71432003), Program for New Century Excellent Talents in University (No. NCET-12-0087), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130185110006), and Philosophy and Social Sciences Research Program of Sichuan Province (No. SC15E055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Appendix

Appendix

Proof of Proposition 1

From Eq. (1), \(\frac{\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q_1 }=w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q_1 \left( {1-\beta } \right) } \right] +w_0 -w_1\), \(\frac{\partial ^{2}E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q_1^2 }=-w_2 \left( {1-\beta } \right) ^{2}f\left[ {q_1 \left( {1-\beta } \right) } \right] <0\), \(\frac{\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q}=(p+g-w_2 )\left( {1-\beta } \right) {\bar{F}}\left[ {q\left( {1-\beta } \right) } \right] -w_0\), \(\frac{\partial ^{2}E\left[ {\pi _r \left( {q_1 ,q} \right) } \right] }{\partial q^{2}}=-\left( {p+g-w_2 } \right) \left( {1-\beta } \right) ^{2}f\left[ {q\left( {1-\beta } \right) } \right] \), and \(\frac{\partial ^{2}E\left[ {\pi _r \left( {q_1 ,q} \right) } \right] }{\partial q_1 \partial q}=\frac{\partial ^{2}E\left[ {\pi _r \left( {q_1 ,q} \right) } \right] }{\partial q\partial q_1 }=0\). Then \(\left| {{\begin{array}{ll} {\frac{\partial ^{2}E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q_1^2 }}&{} {\frac{\partial ^{2}E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q_1 \partial q}} \\ {\frac{\partial ^{2}E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q\partial q_1 }}&{} {\frac{\partial ^{2}E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q^{2}}} \\ \end{array} }} \right| =(p+g-w_2 )w_2 \left( {1-\beta } \right) ^{4}f\left[ {q_1 \left( {1-\beta } \right) } \right] f\left[ {q\left( {1-\beta } \right) } \right] >0,\) it follows that the Hessian matrix of \(E[\pi _r \left( {q_1 ,q}\right) ]\) is negative definite. Thus, \(E[\pi _r \left( {q_1,q} \right) ]\) is jointly concave in \(q_1\) and q. Then the fresh produce retailer’s optimal ordering policy exists and is unique. Let \(\frac{\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q_1}=0\), we obtain the retailer’s optimal firm order quantity is \(q_1^{*} =\frac{1}{1-\beta }F^{-1}\left[ {1-\frac{w_1 -w_0 }{w_2 \left( {1-\beta } \right) }} \right] \).

Let \(\frac{\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial q}=0\), we obtain the retailer’s optimal total order quantity is \(q^{*}=\frac{1}{1-\beta }F^{-1}\left[ {1-\frac{w_0 }{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) }} \right] \).

Since \(q^{*}=q_1^*+q_2^*\), the retailer’s optimal option order quantity is \(q_2^*=\frac{1}{1-\beta }\) \(\left\{ {F^{-1}\left[ {1-\frac{w_0 }{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) }} \right] -F^{-1}\left[ {1-\frac{w_1 -w_0 }{w_2 \left( {1-\beta } \right) }} \right] } \right\} \).

Proof of Lemma 1

Recall that the fresh produce retailer places a firm order and purchases call options simultaneously. We now consider a special case that the retailer’s optimal firm order quantity \(q_1^*=0\). Then \(E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] \) can be rewritten as \(E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] =\left( {w_0 -c} \right) q^{*}+w_2 \int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx.\) Then

$$\begin{aligned} \frac{\partial E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_0 }=q^{*}+\left\{ {w_0 +w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] -c} \right\} \frac{\partial q^{*}}{\partial w_0 }. \end{aligned}$$
(4)

From Proposition 1,

$$\begin{aligned} \frac{\partial q^{*}}{\partial w_0 }=-\frac{1}{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) ^{2}f\left[ {q^{*}\left( {1-\beta } \right) } \right] }. \end{aligned}$$
(5)

Since \(q^{*}=\frac{1}{1-\beta }F^{-1}\left[ {1-\frac{w_0 }{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) }} \right] \), \(\left( {p+g-w_2 } \right) \left( {1-\beta } \right) =\frac{w_0 }{{\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] }\). Then (5) can be rewritten as

$$\begin{aligned} \frac{\partial q^{*}}{\partial w_0 }=-\frac{{\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] }{w_0 \left( {1-\beta } \right) f\left[ {q^{*}\left( {1-\beta } \right) } \right] }=-\frac{1}{w_0 \left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }. \end{aligned}$$
(6)

Taking (6) into (4), we obtain \(\frac{\partial E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_0 }=q^{*}-\frac{\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c}{w_0 \left( {1-\beta } \right) \left( {p+g-w_2 } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }\), \(\frac{\partial ^{2}E\left[ \pi _s \left( {w_0 ,w_2 } \right) \right] }{\partial w_0^2 }=-\frac{w_0 +c}{w_0^2 \left( 1-\beta \right) r\left[ q^{*}\left( {1-\beta } \right) \right] }-\frac{\left[ \left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c \right] r'[q*(1-\beta )]}{w_{0}^2(1-\beta )(\rho +g-w_{2})r^{3}[q*(1-\beta )]}\). Recall that, \(\hbox {F}\left( \cdot \right) \) belongs to the IFR class, if \(\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c>0\), then \(\frac{\partial ^{2}E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_0^2 }<0\).

Similarly, we obtain that \(\frac{\partial E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_2 }=\int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\frac{\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) }{\left( {p+g-w_2 } \right) ^{2}\left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }\), \(\frac{\partial ^{2}E\left[ \pi _s \left( {w_0 ,w_2 } \right) \right] }{\partial w_2^2 }=-\frac{w_0 +c}{\left( p+g-w_2 \right) ^{2}\left( 1-\beta \right) r\left[ q^{*}\left( {1-\beta } \right) \right] }-\frac{\left[ \left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c \right] \left\{ 2r^{2}\left[ {q^{*}\left( {1-\beta } \right) } \right] +r'[q^{*}(1-\beta )]\right\} }{(p+g-w_2)^{3}(1-\beta )r^3[q*(1-\beta )]}\), \(\frac{\partial ^{2}E\left[ \pi _s \left( {w_0 ,w_2 } \right) \right] }{\partial w_0 \partial w_2 }=\frac{\partial ^{2}E\left[ \pi _s \left( {w_0 ,w_2 } \right) \right] }{\partial w_2 \partial w_0 }=-\frac{2\left( p+g \right) -w_2 }{\left( p+g-w_2 \right) ^{2}\left( 1-\beta \right) r\left[ q^{*}\left( {1-\beta } \right) \right] }-\frac{\left[ \left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c\right] r'[q^{*}(1-\beta )]}{(p+g-w_{2})^{2}w_{0}(1-\beta )r^{3}[q^{*}(1-\beta )]}\) Since \(\frac{\partial ^{2}E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_0^2 }<0\left( {if\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c>0} \right) \), \(\left| {{\begin{array}{ll} {\frac{\partial ^{2}E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_0^2 }}&{} {\frac{\partial ^{2}E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_0 \partial w_2 }} \\ {\frac{\partial ^{2}E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_2 \partial w_0 }}&{} {\frac{\partial ^{2}E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] }{\partial w_2^2 }} \\ \end{array} }}\right| \) \(=-\frac{\left[ {\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c} \right] ^{2}}{\left( {p+g-w_2 } \right) ^{4}w_0^2 \left( {1-\beta } \right) ^{2}r^{2}\left[ {q^{*}\left( {1-\beta } \right) } \right] }<0,\) it follows that the Hessian matrix of \(E\left[ {\pi _s \left( {w_0 ,w_2 } \right) } \right] \) is not negative definite. Thus, \(E\left[ {\pi _s \left( {w_0 ,w_2 } \right) }\right] \) is not jointly concave in \(w_0 \) and \(w_2\).

Proof of Proposition 2

From Eq. (2),

$$\begin{aligned} E\left[ {\pi _s \left( {w_0 } \right) } \right]= & {} \left( {w_0 -c} \right) q^{*}+w_2 \int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx+\left( {w_1 -w_0 } \right) q_1^*\nonumber \\&-\,w_2\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x\right) dx. \end{aligned}$$
(7)
$$\begin{aligned} \frac{dE\left[ {\pi _s \left( {w_0 } \right) } \right] }{dw_0}= & {} q^{*}+\left\{ {w_0 -c+w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] -c} \right\} \frac{\partial q^{*}}{\partial w_0 }-q_1^*\nonumber \\&+\left\{ {w_1 -w_0 -w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q_1^*\left( {1-\beta } \right) } \right] } \right\} \frac{\partial q_1^*}{\partial w_0 }. \end{aligned}$$
(8)

From Proposition 1, \(\frac{\partial q^{*}}{\partial w_0 }=-\frac{1}{w_0 \left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }\), \(\frac{\partial q_1^*}{\partial w_0 }=\frac{1}{\left( {w_1 -w_0 } \right) \left( {1-\beta } \right) r\left[ {q_1^*\left( {1-\beta } \right) } \right] }\). Then, (8) can be rewritten as

$$\begin{aligned}&\frac{dE\left[ {\pi _s \left( {w_0 } \right) } \right] }{dw_0 }\nonumber \\&\quad =q^{*}-\left\{ {w_0 -c+w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] -c} \right\} \frac{1}{w_0 \left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }\nonumber \\&\qquad -\,q_1^*+\left\{ {w_1 -w_0 -w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q_1^*\left( {1-\beta } \right) } \right] } \right\} \frac{1}{\left( {w_1 -w_0 } \right) \left( {1-\beta } \right) r\left[ {q_1^*\left( {1-\beta } \right) } \right] }.\nonumber \\ \end{aligned}$$
(9)

Since \(\left( {p+g-w_2 } \right) \left( {1-\beta } \right) =\frac{w_0 }{{\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] }\), \(\left( {1-\beta } \right) {\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] =\frac{w_0 }{p+g-w_2 }\). Since \(w_2 \left( {1-\beta } \right) =\frac{w_1 -w_0 }{{\bar{F}}\left[ {q_1^*\left( {1-\beta } \right) } \right] }\), \(\left( {1-\beta } \right) {\bar{F}}\left[ {q_1^*\left( {1-\beta } \right) } \right] =\frac{w_1 -w_0 }{w_2}\). Then, (9) can be rewritten as

$$\begin{aligned} \frac{dE\left[ {\pi _s \left( {w_0 } \right) } \right] }{dw_0 }=q^{*}-q_1^*-\frac{\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c}{w_0 \left( {1-\beta } \right) \left( {p+g-w_2 } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }. \end{aligned}$$
(10)

Further, \(\frac{d^{2}E\left[ \pi _s \left( {w_0 } \right) \right] }{dw_0^2 }=-\frac{w_0 +c}{w_0^2 \left( 1-\beta \right) r\left[ q^{*}\left( {1-\beta } \right) \right] }-\frac{1}{(w_1 -w_0 )\left( 1-\beta \right) r\left[ q_1^*\left( {1-\beta } \right) \right] }--\frac{\left[ \left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c \right] r'[q*(1-\beta )]}{w_0^{2}(1-\beta )(p+g-w_2)r^3[q*(1-\beta )]}.\)

If \(\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c>0\), i.e., \(c<\frac{\left( {p+g} \right) w_0 }{p+g-w_2 }\), then \(\frac{d^{2}E\left[ {\pi _s \left( {w_0}\right) }\right] }{dw_0^2}<0\). Thus, for a given \(w_2\), suppose \(c<\frac{\left( {p+g}\right) w_0}{p+g-w_2}\) holds, then the fresh produce supplier’s expected profit \(E\left[ {\pi _s\left( {w_0}\right) }\right] \) is concave in \(w_0 \). Thereby, the fresh produce supplier’s optimal option price exists and is unique. Let \(\frac{dE\left[ {\pi _s\left( {w_0}\right) }\right] }{dw_0}\), i.e., (10)\(\,=0\), we obtain the fresh produce supplier’s optimal option price \(\hbox {w}_0^{*} \) is \(w_0^{*} =\frac{\left( {p+g-w_2 } \right) c}{p+g-\left( {p+g-w_2 } \right) \left( {1-\beta } \right) \left( {q^{*}-q_1^*}\right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }\).

Proof of Proposition 3

The proof of Proposition 2 shows that \(E\left[ {\pi _s \left( {w_0 } \right) } \right] \) is concave in \(\hbox {w}_{0}\). So when \(\hbox {w}_{0} \le \hbox {w}_{0}^*\), the fresh produce supplier’s expected profit \(E\left[ {\pi _s\left( {w_0}\right) }\right] \) is increasing in \(w_0 \). From Eq. (1), we obtain equality

$$\begin{aligned} \frac{-\partial E[\pi _r \left( {q_1 ,\hbox {}q} \right) ]}{\partial w_0}= & {} q-q_1 -\left[ {\left( {p+g-w_2 } \right) \left( {1-\beta } \right) {\bar{F}}\left[ {q\left( {1-\beta } \right) } \right] -w_0 } \right] \frac{\partial q}{\partial w_0}\nonumber \\&-\,\left[ {w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q_1 \left( {1-\beta } \right) } \right] +w_0 -w_1 } \right] \frac{\partial q_1 }{\partial w_0 }=q-q_1 \end{aligned}$$
(11)

Since \(\frac{-\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial w_0 }=q-q_1 >0\), the fresh produce retailer’s expected profit \(E[\pi _r \left( {q_1 ,q} \right) ]\) is decreasing in \(w_0 \). From (10)

$$\begin{aligned} \frac{dE\left[ {\pi _s \left( {w_0 } \right) } \right] }{dw_0 }=q^{*}-q_1^*-\frac{\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c}{w_0 \left( {1-\beta } \right) \left( {p+g-w_2 } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] } \end{aligned}$$
(12)

From Proposition 1, \(q^{*}\) decreases with \(w_0 \), and \(q_1^*\) increases with \(w_0 \). Thus, when \(w_0 \le w_0^*\), we obtain \(q>q^{*}\), and \(q_1 <q_1^*\). Comparing (11) and (12), we can conclude that \(-\partial E[\pi _r \left( {q_1 ,q} \right) ]/\partial w_0 >dE\left[ {\pi _s \left( {w_0 } \right) } \right] /dw_0 \).

Proof of Proposition 4

From Eq. (2),

$$\begin{aligned} E\left[ {\pi _s \left( {w_2 } \right) } \right]= & {} \left( {w_0 -c} \right) q^{*}+w_2 \int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx+\left( {w_1 -w_0 } \right) q_1^*\nonumber \\&-\,w_2\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x\right) dx. \end{aligned}$$
(13)
$$\begin{aligned} \frac{dE\left[ {\pi _s \left( {w_2 } \right) } \right] }{dw_2 }= & {} \left( {w_0 -c} \right) \frac{\partial q^{*}}{\partial w_2 }+\int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx+w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q^{*}\left( {1-\beta } \right) } \right] \frac{\partial q^{*}}{\partial w_2 }\nonumber \\&+\,\left( {w_1 -w_0 } \right) \frac{\partial q_1^*}{\partial w_2 }-\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q_1^*\left( {1-\beta } \right) } \right] \frac{\partial q^{*}}{\partial w_2 }.\nonumber \\ \end{aligned}$$
(14)

From Proposition 1, \(\frac{\partial q^{*}}{\partial w_2 }=-\frac{1}{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }\), \(\frac{\partial q_1^*}{\partial w_2 }=\frac{1}{w_2 \left( {1-\beta } \right) r\left[ {q_1^*\left( {1-\beta } \right) } \right] }\). Then, (14) can be rewritten as

$$\begin{aligned} \frac{dE\left[ {\pi _s \left( {w_2 } \right) } \right] }{dw_2 }= & {} \int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx\nonumber \\&-\,\frac{\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c}{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }. \end{aligned}$$
(15)

Further, \(\frac{d^{2}E\left[ \pi _s \left( {w_2 } \right) \right] }{dw_2^2 }=-\frac{w_0 +c}{\left( p+g-w_2 \right) ^{2}\left( 1-\beta \right) r\left[ q^{*}\left( {1-\beta } \right) \right] }-\frac{w_1 -w_0 }{w_2^2 \left( 1-\beta \right) r\left[ q_1^*\left( {1-\beta } \right) \right] }-\frac{\left[ \left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c \right] \{2r^{2}[q*(1-\beta )]+r'[q*(1-\beta )]\}}{(p+g-w_2)^3(1-\beta )r^{3}[q*(1-\beta )]}.\)

If \(\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c>0\), i.e., \(c<\frac{\left( {p+g} \right) w_0 }{p+g-w_2 }\), then \(\frac{d^{2}E\left[ {\pi _s \left( {w_2 } \right) } \right] }{dw_2^2 }<0\). Thus, for a given \(w_0 \), suppose \(c<\frac{\left( {p+g} \right) w_0 }{p+g-w_2 }\) holds, then the fresh produce supplier’s expected profit \(E\left[ {\pi _s \left( {w_2 } \right) } \right] \) is concave in \(w_2 \). Thereby, the fresh produce supplier’s optimal exercise price exists and is unique. Let \(\frac{dE\left[ {\pi _s \left( {w_2 } \right) } \right] }{dw_2 }=0\), i.e., (15) \(=\) 0, we obtain the fresh produce supplier’s optimal exercise price \(w_2^*\) satisfies \(\left( {p+g-w_2^{*}}\right) ^{2}\left( {1-\beta }\right) r\left[ {q^{*}\left( {1-\beta }\right) } \right] \Big [ \int _0^{q^{*}\left( {1-\beta }\right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx \Big ]=\left( {p+g} \right) w_0 -\left( {p+g-w_2^{*}}\right) c\).

Proof of Proposition 5

The proof of Proposition 4 shows that \(E\left[ {\pi _s \left( {w_2 } \right) } \right] \) is concave in \(w_2 \). So when \(w_2 \le w_2^*\), the fresh produce supplier’s expected profit \(E\left[ {\pi _s \left( {w_2 } \right) } \right] \) is increasing in \(w_2 \). From Eq. (1), we obtain equality

$$\begin{aligned} \frac{-\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial w_2}= & {} \int _0^{q\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1 \left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx\nonumber \\&-\,\left\{ {\left( {p+g-w_2 } \right) \left( {1-\beta } \right) {\bar{F}}\left[ {q\left( {1-\beta } \right) } \right] -w_0 } \right\} \frac{\partial q}{\partial w_2 }\nonumber \\&-\,\left\{ {w_2 \left( {1-\beta } \right) {\bar{F}}\left[ {q_1 \left( {1-\beta } \right) } \right] +w_0 -w_1 } \right\} \frac{\partial q_1 }{\partial w_2}\nonumber \\= & {} \int _0^{q\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1 \left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx \end{aligned}$$
(16)

Since \(\frac{-\partial E[\pi _r \left( {q_1 ,q} \right) ]}{\partial w_2 }=\int _0^{q\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1 \left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx\), the fresh produce retailer’s expected profit \(E[\pi _r \left( {q_1 ,q} \right) ]\) is decreasing in \(w_2 \). From (15)

$$\begin{aligned} \frac{dE\left[ {\pi _s \left( {w_2 } \right) } \right] }{dw_2 }= & {} \int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx\nonumber \\&-\,\frac{\left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c}{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }. \end{aligned}$$
(17)

From Proposition 1, \(q^{*}\) decreases with \(w_2 \), and \(q_1^*\) increases with \(w_2\). Thus, when \(w_2 \le w_2^*\), we obtain \(q>q^{*}\), and \(q_1 <q_1^*\). Comparing (16) and (17), we can conclude that \(-\partial E[\pi _r \left( {q_1 ,q} \right) ]/\partial w_2 >dE\left[ {\pi _s \left( {w_2 } \right) } \right] /dw_2\).

Proof of Proposition 6

From Eq. (3),

$$\begin{aligned} \frac{dE\left[ {\pi _I \left( {Q_I } \right) } \right] }{dQ_I}= & {} \left( {p+g} \right) \left( {1-\beta } \right) -c-\left( {p+g} \right) \left( {1-\beta } \right) F\left[ {Q_I \left( {1-\beta } \right) } \right] ,\nonumber \\ \frac{d^{2}E\left[ {\pi _I \left( {Q_I } \right) } \right] }{dQ_I^2}= & {} -\left( {p+g} \right) \left( {1-\beta } \right) ^{2}f\left[ {Q_I \left( {1-\beta } \right) } \right] <0. \end{aligned}$$
(18)

Thus, \(E\left[ {\pi _I \left( {Q_I } \right) } \right] \) is concave in \(Q_I\). Let \(\frac{dE\left[ {\pi _I \left( {Q_I } \right) } \right] }{dQ_I }=0\), i.e., (18) = 0, we obtain that the integrated fresh produce supply chain’s optimal supply quantity is \(Q_I^*=\frac{1}{1-\beta }F^{-1}\left[ {1-\frac{c}{\left( {p+g} \right) \left( {1-\beta } \right) }} \right] \).

Proof of Proposition 7

As supply chain coordination requires that the decisions of a decentralized chain and an integrated chain are consistent with each other. With Proposition 1 and Proposition 6, let \(Q_I^*=q^{*}\), we obtain

$$\begin{aligned} q^{*}= & {} \frac{1}{1-\beta }F^{-1}\left[ {1-\frac{w_0 }{\left( {p+g-w_2 } \right) \left( {1-\beta } \right) }} \right] \\= & {} Q_I^*=\frac{1}{1-\beta }F^{-1}\left[ {1-\frac{c}{\left( {p+g} \right) \left( {1-\beta } \right) }} \right] . \end{aligned}$$

i.e., when \(w_0 =\frac{\left( {p+g-w_2 } \right) c}{p+g}\) holds, the fresh produce supply chain can be coordinated.

Proof of Proposition 8

Case 1: When \(w_2 \) is given, from Proposition 2, the fresh produce supplier’s optimal option price \(w_0^*\) is

$$\begin{aligned} w_0^*=\frac{\left( {p+g-w_2 } \right) c}{p+g-\left( {p+g-w_2 } \right) \left( {1-\beta } \right) \left( {q^{*}-q_1^*} \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] }. \end{aligned}$$
(19)

However, form Proposition 7, fresh produce supply chain coordination must satisfy

$$\begin{aligned} w_0 =\frac{\left( {p+g-w_2 } \right) c}{p+g}. \end{aligned}$$
(20)

Comparing (19) and (20), we can obtain \(w_0^*>w_0\).

Case 2: When \(w_0 \) is given, from Proposition 4, the fresh produce supplier’s optimal exercise price \(w_2^*\) satisfies

$$\begin{aligned}&\left( {p+g-w_2^*} \right) ^{2}\left( {1-\beta } \right) r\left[ {q^{*}\left( {1-\beta } \right) } \right] \left[ {\int _0^{q^{*}\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx-\int _0^{q_1^*\left( {1-\beta } \right) } {\bar{F}}\left( x \right) dx} \right] \nonumber \\&\quad =\left( {p+g} \right) w_0 -\left( {p+g-w_2^*} \right) c. \end{aligned}$$
(21)

However, form Proposition 7, fresh produce supply chain coordination must satisfy \(\left( {p+g} \right) w_0 =\left( {p+g-w_2 } \right) c\), i.e.,

$$\begin{aligned} \left( {p+g} \right) w_0 -\left( {p+g-w_2 } \right) c=0. \end{aligned}$$
(22)

Comparing (21) and (22), we can obtain \(w_2^*>w_2\).

Combining Cases 1 and 2, we can conclude that when the fresh produce supply chain is coordinated, the fresh produce supplier cannot realize its optimal pricing strategy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, X. Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Ann Oper Res 248, 471–491 (2017). https://doi.org/10.1007/s10479-016-2167-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2167-7

Keywords

Navigation