Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article

Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations

  • Open Access
  • Published: 31 July 2023
  • volume 49, Article number: 62 (2023)
Download PDF

You have full access to this open access article

Advances in Computational Mathematics Aims and scope Submit manuscript
Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Download PDF
  • Ben Moseley  ORCID: orcid.org/0000-0003-2238-17831,
  • Andrew Markham2 &
  • Tarje Nissen-Meyer3 
  • 645 Accesses

  • Explore all metrics

  • Cite this article

Abstract

Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving problems relating to differential equations. Compared to classical numerical methods, PINNs have several advantages, for example their ability to provide mesh-free solutions of differential equations and their ability to carry out forward and inverse modelling within the same optimisation problem. Whilst promising, a key limitation to date is that PINNs have struggled to accurately and efficiently solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. Multiple significant and related factors contribute to this issue, including the increasing complexity of the underlying PINN optimisation problem as the problem size grows and the spectral bias of neural networks. In this work, we propose a new, scalable approach for solving large problems relating to differential equations called finite basis physics-informed neural networks (FBPINNs). FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support. In FBPINNs, neural networks are used to learn these basis functions, which are defined over small, overlapping subdomains. FBINNs are designed to address the spectral bias of neural networks by using separate input normalisation over each subdomain and reduce the complexity of the underlying optimisation problem by using many smaller neural networks in a parallel divide-and-conquer approach. Our numerical experiments show that FBPINNs are effective in solving both small and larger, multi-scale problems, outperforming standard PINNs in both accuracy and computational resources required, potentially paving the way to the application of PINNs on large, real-world problems.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Data Availibility

All our training/test data were generated synthetically, and all the code required to reproduce this data and our results is available here: https://github.com/benmoseley/FBPINNs.

References

  1. Giorgi, F.: Thirty years of regional climate modeling: where are we and where are we going next? Journal of Geophysical Research: Atmospheres 124(11), 5696–5723 (2019). https://doi.org/10.1029/2018JD030094

    Article  Google Scholar 

  2. Prein, A.F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., Van Lipzig, N.P.M., Leung, R.: A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53(2), 323–361 (2015). https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  3. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gomez Cadenas, J.J., Gonzalez, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D.: GEANT4 - a simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  4. Jasak, H.: OpenFOAM: open source CFD in research and industry. International Journal of Naval Architecture and Ocean Engineering 1(2), 89–94 (2009). https://doi.org/10.2478/ijnaoe-2013-0011

    Article  Google Scholar 

  5. Leng, K., Nissen-Meyer, T., van Driel, M., Hosseini, K., Al-Attar, D.: AxiSEM3D: broad-band seismic wavefields in 3-D global earth models with undulating discontinuities. Geophys. J. Int. 217(3), 2125–2146 (2019). https://doi.org/10.1093/gji/ggz092

    Article  Google Scholar 

  6. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, (2009)

  7. Rasp, S., Pritchard, M.S., Gentine, P.: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. U. S. A. 115(39), 9684–9689 (2018). arXiv:1806.04731. https://doi.org/10.1073/pnas.1810286115

  8. Moseley, B., Nissen-Meyer, T., Markham, A.: Deep learning for fast simulation of seismic waves in complex media. Solid Earth 11(4), 1527–1549 (2020). https://doi.org/10.5194/se-11-1527-2020

    Article  Google Scholar 

  9. Kasim, M.F., Watson-Parris, D., Deaconu, L., Oliver, S., Hatfield, P., Froula, D.H., Gregori, G., Jarvis, M., Khatiwala, S., Korenaga, J., Topp-Mugglestone, J., Viezzer, E., Vinko, S.M.: Building high accuracy emulators for scientific simulations with deep neural architecture search. Machine Learning: Science and Technology 3(1), 015013 (2022). arXiv:2001.08055. https://doi.org/10.1088/2632-2153/ac3ffa

  10. Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H., Parashar, M., Patra, A., Sethian, J., Wild, S., Willcox, K., Lee, S.: Workshop report on basic research needs for scientific machine learning: core technologies for artificial intelligence. Technical report, USDOE Office of Science (SC) (United States) (2019). https://doi.org/10.2172/1478744. http://www.osti.gov/servlets/purl/1478744/

  11. Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V.: Integrating scientific knowledge with machine learning for engineering and environmental systems. arXiv 1, 1 (2020). arXiv:2003.04919

  12. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks 9(5), 987–1000 (1998).arXiv:9705023[physics]. https://doi.org/10.1109/72.712178

  13. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

    Article  MathSciNet  MATH  Google Scholar 

  14. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nature Reviews Physics, 1–19 (2021). https://doi.org/10.1038/s42254-021-00314-5

  15. Cuomo, S., di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics-informed neural networks: where we are and what’s next. arXiv (2022). arXiv:2201.05624

  16. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020). https://doi.org/10.1126/science.aaw4741

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, L., Gao, H., Pan, S., Wang, J.X.: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 361 (2020). arXiv:1906.02382. https://doi.org/10.1016/j.cma.2019.112732

  18. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-informed neural networks for cardiac activation mapping. Frontiers in Physics 8, 42 (2020). https://doi.org/10.3389/fphy.2020.00042

    Article  Google Scholar 

  19. Moseley, B., Markham, A., Nissen-Meyer, T.: Solving the wave equation with physics-informed deep learning. arXiv (2020). arXiv:2006.11894

  20. Cai, S., Wang, Z., Fuest, F., Jeon, Y.J., Gray, C., Karniadakis, G.E.: Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. J. Fluid Mech. 915, 102 (2021). arXiv:2103.02807. https://doi.org/10.1017/jfm.2021.135

  21. Yang, L., Meng, X., Karniadakis, G.E.: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109913 (2021). https://doi.org/10.1016/j.jcp.2020.109913

    Article  MathSciNet  MATH  Google Scholar 

  22. Kharazmi, E., Zhang, Z., Karniadakis, G.E.M.: VPINNs: variational physics-informed neural networks for solving partial differential equations. arXiv (2019). arXiv:1912.00873

  23. Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019). arXiv:1901.06314. https://doi.org/10.1016/j.jcp.2019.05.024

  24. Geneva, N., Zabaras, N.: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2020). arXiv:1906.05747. https://doi.org/10.1016/j.jcp.2019.109056

  25. Gao, H., Sun, L., Wang, J.X.: PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 428, 110079 (2021). arXiv:2004.13145. https://doi.org/10.1016/j.jcp.2020.110079

  26. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence 3(3), 218–229 (2021). https://doi.org/10.1038/s42256-021-00302-5

    Article  Google Scholar 

  27. Wang, S., Wang, H., Perdikaris, P.: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science Advances 7(40), 8605–8634 (2021). arXiv:2103.10974. https://doi.org/10.1126/sciadv.abi8605

  28. Pang, G., Lu, L.U., Karniadakis, G.E.M.: FPinns: fractional physics-informed neural networks. SIAM J. Sci. Comput. 41(4), 2603–2626 (2019). arXiv:1811.08967. https://doi.org/10.1137/18M1229845

  29. Yang, L., Zhang, D., Karniadakis, G.E.: Physics-informed generative adversarial networks for stochastic differential equations. SIAM J . Sci. Comput. 42(1), 292–317 (2020). arXiv:1811.02033. https://doi.org/10.1137/18M1225409

  30. Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019). arXiv:1809.08327. https://doi.org/10.1016/j.jcp.2019.07.048

  31. Chen, Z., Liu, Y., Sun, H.: Physics-informed learning of governing equations from scarce data. Nat. Commun. 12(1), 1–13 (2021). arXiv:2005.03448. https://doi.org/10.1038/s41467-021-26434-1

  32. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Review 63( 1), 208–228 (2021). arXiv:1907.04502. https://doi.org/10.1137/19M1274067

  33. Hennigh, O., Narasimhan, S., Nabian, M.A., Subramaniam, A., Tangsali, K., Rietmann, M., Ferrandis, J.d.A., Byeon, W., Fang, Z., Choudhry, S.: NVIDIA SimNet\(^{TM}\): an AI-accelerated multi-physics simulation framework. arXiv (2020) arXiv:2012.07938

  34. Koryagin, A., Khudorozkov, R., Tsimfer, S.: PyDEns: a Python-framework for solving differential equations with neural networks. arXiv (2019). arXiv:1909.11544

  35. Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., Di Giovanni, M.: NeuroDiffEq: a Python package for solving differential equations with neural networks. Journal of Open Source Software 5(46), 1931 (2020). https://doi.org/10.21105/joss.01931

    Article  Google Scholar 

  36. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 43(5), 3055–3081 (2021). arXiv:2001.04536. https://doi.org/10.1137/20M1318043

  37. Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: a neural tangent kernel perspective. J. Comput. Phys. 449, 110768 (2022). arXiv:2007.14527. https://doi.org/10.1016/j.jcp.2021.110768

  38. Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Communications in Computational Physics 28(5), 2042–2074 (2020). arXiv:2004.01806. https://doi.org/10.4208/cicp.oa-2020-0193

  39. Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J. Numer. Anal. 00, 1–43 (2022). arXiv:2006.16144. https://doi.org/10.1093/imanum/drab093

  40. Xu, Z.Q.J., Zhang, Y., Luo, T., Xiao, Y., Ma, Z.: Frequency principle: Fourier analysis sheds light on deep neural networks. Communications in Computational Physics 28( 5), 1746–1767 (2020). arXiv:1901.06523. https://doi.org/10.4208/CICP.OA-2020-0085

  41. Rahaman, N., Baratin, A., Arpit, D., Draxlcr, F., Lin, M., Hamprecht, F.A., Bengio, Y., Courville, A.: On the spectral bias of neural networks. In: 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 9230–9239. International Machine Learning Society (IMLS), (2019). arXiv:1806.08734

  42. Basri, R., Jacobs, D., Kasten, Y., Kritchman, S.: The convergence rate of neural networks for learned functions of different frequencies. In: Advances in Neural Information Processing Systems, vol. 32. Neural information processing systems foundation, (2019). arXiv:1906.00425

  43. Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., Gu, Q.: Towards understanding the spectral bias of deep learning. IJCAI (2021). arXiv:1912.01198

  44. Wang, S., Wang, H., Perdikaris, P.: On the eigenvector bias of Fourier feature networks: from regression to solving multi-scale PDEs with physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 384, 113938 (2021). arXiv:2012.10047. https://doi.org/10.1016/j.cma.2021.113938

  45. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T., Ng, R.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 2020-Decem. Neural information processing systems foundation, (2020). https://doi.org/10.48550/arxiv.2006.10739. arXiv:2006.10739v1

  46. Liu, Z., Cai, W., Xu, Z.Q.J.: Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains. Communications in Computational Physics 28(5), 1970–2001 (2020). arXiv:2007.11207. https://doi.org/10.4208/CICP.OA-2020-0179

  47. Heinlein, A., Klawonn, A., Lanser, M., Weber, J.: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review. GAMM-Mitteilungen 44(1), 202100001 (2021). https://doi.org/10.1002/gamm.202100001

    Article  MathSciNet  Google Scholar 

  48. Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics 28(5), 2002–2041 (2020). https://doi.org/10.4208/CICP.OA-2020-0164

    Article  MathSciNet  MATH  Google Scholar 

  49. Shukla, K., Jagtap, A.D., Karniadakis, G.E.: Parallel physics-informed neural networks via domain decomposition. J. Comput. Phys. 447, 110683 (2021). arXiv:2104.10013. https://doi.org/10.1016/j.jcp.2021.110683

  50. Dwivedi, V., Parashar, N., Srinivasan, B.: Distributed learning machines for solving forward and inverse problems in partial differential equations. Neurocomputing 420, 299–316 (2021). https://doi.org/10.1016/j.neucom.2020.09.006

    Article  Google Scholar 

  51. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021) arXiv:2012.02895. https://doi.org/10.1016/j.cma.2021.114129

  52. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  53. Li, K., Tang, K., Wu, T., Liao, Q.: D3M: a deep domain decomposition method for partial differential equations. IEEE Access 8, 5283–5294 (2020). arXiv:1909.12236. https://doi.org/10.1109/ACCESS.2019.2957200

  54. Stiller, P., Bethke, F., Böhme, M., Pausch, R., Torge, S., Debus, A., Vorberger, J., Bussmann, M., Hoffmann, N.: Large-scale neural solvers for partial differential equations. In: Nichols, J., Verastegui, B., Maccabe, A.B., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI, pp. 20–34. Springer, (2020)

  55. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 374 (2021). arXiv:2003.05385. https://doi.org/10.1016/j.cma.2020.113547

  56. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d\(\backslash \)textquotesingle Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  57. Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Transactions on Neural Networks 11(5), 1041–1049 (2000). https://doi.org/10.1109/72.870037

    Article  Google Scholar 

  58. Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317, 28–41 (2018). arXiv:1711.06464. https://doi.org/10.1016/j.neucom.2018.06.056

  59. Leake, C., Mortari, D.: Deep theory of functional connections: a new method for estimating the solutions of partial differential equations. Machine Learning and Knowledge Extraction 2(1), 37–55 (2020). https://doi.org/10.3390/make2010004

    Article  Google Scholar 

  60. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015). arXiv:1412.6980

  61. Basdevant, C., Deville, M., Haldenwang, P., Lacroix, J.M., Ouazzani, J., Peyret, R., Orlandi, P., Patera, A.T.: Spectral and finite difference solutions of the Burgers equation. Computers and Fluids 14(1), 23–41 (1986). https://doi.org/10.1016/0045-7930(86)90036-8

    Article  MATH  Google Scholar 

  62. Igel, H.: Computational seismology: a practical introduction. Oxford University Press, (2017)

  63. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), 155–167 (2007)

    Article  Google Scholar 

  64. Jacotécole, A., Jacotécole, J., Fédérale De Lausanne, P., Gabriel, F.: Neural tangent kernel: convergence and generalization in neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

Download references

Acknowledgements

We would like to thank the EPSRC and AIMS CDT for supporting this work. This work makes use of the BURGERS_SOLUTION code written by John Burkardt (link) and the SEISMIC_CPML library [63].

Funding

This work was funded by the UKRI EPSRC Center for Doctoral Training in Autonomous Intelligent Machines and Systems (AIMS CDT).

Author information

Authors and Affiliations

  1. AI Center, ETH Zürich, Zürich, Switzerland

    Ben Moseley

  2. Department of Computer Science, University of Oxford, Oxford, UK

    Andrew Markham

  3. Department of Earth Sciences, University of Oxford, Oxford, UK

    Tarje Nissen-Meyer

Authors
  1. Ben Moseley
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrew Markham
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tarje Nissen-Meyer
    View author publications

    You can also search for this author in PubMed Google Scholar

Contributions

Contributions (CRediT taxonomy) BM: conceptualisation, formal analysis, investigation, methodology, software, validation, visualisation, writing - original draft. AM, TNM: supervision, writing - review and editing.

Corresponding author

Correspondence to Ben Moseley.

Ethics declarations

Competing of interests

The authors declare no competing interests.

Additional information

Communicated by: Siddhartha Mishra

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moseley, B., Markham, A. & Nissen-Meyer, T. Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations. Adv Comput Math 49, 62 (2023). https://doi.org/10.1007/s10444-023-10065-9

Download citation

  • Received: 23 June 2022

  • Accepted: 28 June 2023

  • Published: 31 July 2023

  • DOI: https://doi.org/10.1007/s10444-023-10065-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Physics-informed neural networks
  • Domain decomposition
  • Multi-scale modelling
  • Forward modelling
  • Differential equations
  • Parallel computing

Mathematics Subject Classification (2010)

  • 65M99
  • 68T01
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature