
Advances in Computational Mathematics (2023) 49:62
https://doi.org/10.1007/s10444-023-10065-9

Finite basis physics-informed neural networks
(FBPINNs): a scalable domain decomposition approach
for solving differential equations

Ben Moseley1 · Andrew Markham2 · Tarje Nissen-Meyer3

Received: 23 June 2022 / Accepted: 28 June 2023 / Published online: 31 July 2023
© The Author(s) 2023

Abstract
Recently, physics-informed neural networks (PINNs) have offered a powerful new
paradigm for solving problems relating to differential equations. Compared to classi-
cal numerical methods, PINNs have several advantages, for example their ability to
provide mesh-free solutions of differential equations and their ability to carry out for-
ward and inverse modelling within the same optimisation problem. Whilst promising,
a key limitation to date is that PINNs have struggled to accurately and efficiently solve
problems with large domains and/or multi-scale solutions, which is crucial for their
real-world application. Multiple significant and related factors contribute to this issue,
including the increasing complexity of the underlying PINN optimisation problem as
the problem size grows and the spectral bias of neural networks. In this work, we
propose a new, scalable approach for solving large problems relating to differential
equations called finite basis physics-informed neural networks (FBPINNs). FBPINNs
are inspired by classical finite element methods, where the solution of the differen-
tial equation is expressed as the sum of a finite set of basis functions with compact
support. In FBPINNs, neural networks are used to learn these basis functions, which
are defined over small, overlapping subdomains. FBINNs are designed to address the
spectral bias of neural networks by using separate input normalisation over each sub-
domain and reduce the complexity of the underlying optimisation problem by using
many smaller neural networks in a parallel divide-and-conquer approach. Our numer-
ical experiments show that FBPINNs are effective in solving both small and larger,
multi-scale problems, outperforming standard PINNs in both accuracy and computa-
tional resources required, potentially paving the way to the application of PINNs on
large, real-world problems.

Communicated by: Siddhartha Mishra

B Ben Moseley
benjamin.moseley@ai.ethz.ch

1 AI Center, ETH Zürich, Zürich, Switzerland

2 Department of Computer Science, University of Oxford, Oxford, UK

3 Department of Earth Sciences, University of Oxford, Oxford, UK

6789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-023-10065-9&domain=pdf
http://orcid.org/0000-0003-2238-1783

62 Page 2 of 39 B. Moseley et al.

Keywords Physics-informed neural networks · Domain decomposition · Multi-scale
modelling · Forward modelling · Differential equations · Parallel computing

Mathematics Subject Classification (2010) 65M99 · 68T01

1 Introduction

Solving forward and inverse problems relating to differential equations has been the
subject of intense research focus over many decades. Indeed, many areas of science
rely on our ability to accurately solve these problems, from modelling the climate
to understanding fundamental particle physics [1–3]. Classical approaches such as
finite difference, finite element, and spectral methods have emerged as the domi-
nant approach, with great advances in their performance being made throughout the
decades. Today, these methods are capable of solving highly complex, large-scale
problems and are often implemented using sophisticated, adaptive and parallel algo-
rithms utilising thousands of CPU and GPU cores [4, 5].

Whilst powerful, classical methods also have some long-standing limitations. For
example, many of today’s applications require the study of multi-physics, multi-scale
systems, which can be very challenging to incorporate and model accurately, often
requiring the use of adaptive schemes and subgrid parameterisations [6, 7]. Another
is the vast computational resources that are typically required, which render many
real-world applications unfeasible. Thirdly, implementations of classical approaches
are often elaborate and can require millions of lines of code, making them challenging
to maintain from generation to generation [4].

In recent years, researchers have turned towards the rapid advances in machine
learning as a potential way to address some of these challenges. One strategy is to
entirely replace classical methods with purely data-driven algorithms (for example see
[8, 9]), andwhilst this can lead to advantages such as dramatic savings in computational
efficiency, it reveals important flaws in current machine learning techniques such as
issues with generalisation and the need for large amounts of training data. A more
recent strategy is to blend together physical principles and traditional algorithms with
machine learning in a more nuanced way to create more powerful models, in the
burgeoning field of scientific machine learning (SciML) [10, 11].

One such approach which has received significant attention are physics-informed
neural networks (PINNs) [12–15], which can be used to solve both forward and inverse
problems relating to differential equations. PINNs use a deep neural network to rep-
resent the solution of a differential equation, which is trained using a loss function
which directly penalises the residual of the underlying equation. PINNs have multiple
benefits in comparison to classical methods, for example they provide approximate
mesh-free solutions which have tractable analytical gradients, and they provide an
elegant way to carry out joint forward and inverse modelling within the same optimi-
sation problem [13]. Many of the fundamental concepts behind PINNs were proposed
in the 1990s by [12] and others, whilst [13] implemented and extended them with
modern deep learning techniques.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 3 of 39 62

Since these works, PINNs have been utilised in a wide range of applications, for
example in simulating fluid flow [16, 17], carrying out cardiac activation mapping
[18], modelling wave physics [19], and even in predicting the temperature distribution
over an espresso cup [20]. Many extensions of PINNs have also been investigated. For
example, one extension is to include uncertainty estimation within PINNs, and [21]
proposedBayesian PINNswhich useBayesian neural networks to estimate uncertainty
in the PINN solution. Another is to use the variational form of differential equations to
construct an alternative optimisation problem (see, for example [22]). [23], [24] and
[25] instead used finite difference filters to construct a differential equation residual
in a PINN-like loss function when training CNNs and RNNs to approximate the
solution of the differential equation on a mesh. The advantage of this approach is
that these models can be easily conditioned on the initial conditions of the problem,
i.e. they allow surrogate models to be learned. [26] proposed DeepONets, which also
condition neural networks on their initial conditions such that they learn families
of solutions, and DeepONets can be extended to include PINN loss functions [27].
In other applications, PINNs have been extended to fractional differential equations
[28], stochastic differential equations [29, 30], and have even been used to discover
underlying differential equations themselves [31]. Multiple software libraries have
been developedwhich allow PINNs to be trained easily and quickly, such as DeepXDE
[32], SimNet [33], PyDEns [34] and NeuroDiffEq [35].

Whilst popular and effective, PINNs also suffer from some significant limitations.
One is that, in comparison to classical approaches, the theoretical convergence prop-
erties of PINNs are still poorly understood. For example, the PINN loss function can
be highly non-convex and result in a stiff optimisation problem, yet it is unclear which
classes of problems this affects [36, 37].Work by [37–39] and others have made initial
steps towards understanding the theoretical properties of PINNs but this sub-field is
in its early stages. Another is the poor computational efficiency of PINNs. A standard
PINN must be retrained for each solution, which is expensive and typically means
classical methods strongly outperform PINNs, at least for forward modelling tasks.
Works which condition PINNs on their initial conditions so that they learn a family of
solutions, such as those aforementioned above [23–25, 27], could potentially address
this issue.

Finally, a major challenge is scaling PINNs to large problem domains. There are
multiple related issues in this respect. One is that, as the domain size increases, the
complexity of the solution typically increases, which inevitably requires the size of
the neural network (or number of free parameters) to increase such that the network is
expressive enough to represent it. This in turn results in a harder PINN optimisation
problem, both in terms of the number of free parameters and the increased number
of training points required to sufficiently sample the solution over the larger domain,
and typically leads to much slower convergence times. Another is the spectral bias of
neural networks. This is thewell-studied observation that neural networks tend to learn
higher frequencies much more slowly than lower frequencies [40–43], with various
convergence rates being proved. Because a problem’s input variables are typically
normalised over the domain before being input to a PINN, low-frequency features in
the solution effectively become high-frequency features as the domain size increases,
which can severely hinder the convergence of PINNs. Similarly, spectral bias is amajor

123

62 Page 4 of 39 B. Moseley et al.

issue when solving problems with multi-scale solutions [44]. These limitations have
meant that the vast majority of PINN applications to date have only solved problems
in small domains with limited frequency content.

Recent works have started to investigate these issues. [44] showed that spectral bias
also affects PINNs and proposed the use of Fourier input features [45] to help alleviate
this issue, which transform the input variables overmultiple scales using trigonometric
functions as a pre-processing step. [46] proposed multi-scale deep neural networks,
which used radial scaling of the input variables in the frequency domain to achieve
uniform convergence across multiple scales when solving problems with a PINN loss.
However, for both of these methods, the scale of their input features must be chosen
to match the frequency range of interest.

For reducing the complexity of the PINN optimisation problem, an increasingly
popular approach is to use domain decomposition [47], taking inspiration from exist-
ing classical methods such as finite element modelling. Instead of solving one large
PINN optimisation problem, the idea is to use a “divide and conquer” approach and
train many smaller problems in parallel. This can reduce training times and could
potentially reduce the difficulty of the global optimisation problem too. For example,
[48] proposed XPINNs, which divide the problem domain into many subdomains and
use separate neural networks in each subdomain to learn the solution. A key consider-
ation in any domain decomposition approach is to ensure that individual subdomain
solutions are communicated and match across the subdomain interfaces, and [48] rely
upon additional interfaces terms in their PINN loss function to do so. In follow-up
work, [49] showed their approach can be parallelised to multiple GPUs, decreasing
training times. However, a key downside of their approach is that it contains disconti-
nuities in the PINN solution across subdomain interfaces, as the interface conditions
are onlyweakly constrained in the loss function. Similar domain decomposition strate-
gies were proposed by [50] and [51], but who instead used extreme learning machines
(ELMs) [52] as the neural networks in each subdomain, which can be rapidly trained.
However, whilst [51] claimed computational efficiency comparable to finite element
modelling, ELMs restrict the capacity of neural networks as only theweights in the last
layer can be updated. In other related approaches, [53] replaced subdomain solvers
of the classical Schwarz domain decomposition approach with PINNs, resulting in
a similar strategy to [48]. [54] proposed GatedPINNs, which use an auxiliary neural
network to learn the domain decomposition itself, and [55] use domain decomposition
to train variational PINNs, although only when defining the space of test functions.

In this work, we propose a new domain decomposition approach for solv-
ing large, multi-scale problems relating to differential equations called finite basis
physics-informed neural networks (FBPINNs). In contrast to the existing domain
decomposition approaches, we ensure that interface continuity is strictly enforced
across the subdomain boundaries by the mathematical construction of our PINN solu-
tion ansatz, which removes the need for additional interface terms in our PINN loss
function. Furthermore, we explicitly consider the effects of spectral bias by using
separate input variable normalisation within each subdomain, which restricts the
effective solution frequency each subdomain network sees. We further propose flex-
ible training schedules which can aid the convergence of FBPINNs and propose a
parallel training algorithm which allows FBPINNs to be scaled computationally. To

123

Finite basis physics-informed neural networks (FBPINNs)... Page 5 of 39 62

numerically validate our approach, we compare the accuracy of FBPINNs to stan-
dard PINNs across a range of problem sizes, both in terms of domain size and
dimensionality, including problems with multi-scale solutions. These experiments
suggest that FBPINNs are effective in solving both small and larger, multi-scale prob-
lems, outperforming standard PINNs in both accuracy and computation resources
required. All of the code for reproducing the results of this paper can be found at
github.com/benmoseley/FBPINNs.

The remainder of this paper is as follows. In Section 2, we describe the standard
PINN implementation as defined by [13], as well as the alternative constructed ansatz
formulation proposed by [12]. In Section 3, we motivate FBPINNs by showing a
simple example where PINNs break down: that of learning the solution to du

dx =
cosωx for large values of ω. In Section 4, we present the FBPINN methodology in
detail. In Section 5, we present numerical results which compare the performance
PINNs and FBPINNs across many smaller and larger scale problems, including the
Burgers equation and the wave equation. Finally, in Sections6 and 7, we discuss the
implications and conclusions of our work.

2 Physics-informed neural networks (PINNs)

PINNs are designed to solve differential equations of the general form [13]

D[u(x); λ] = f (x) , x ∈ � ,

Bk[u(x)] = gk(x) , x ∈ �k ⊂ ∂� ,
(1)

for k = 1, 2, ..., nb whereD is a differential operator,Bk is a set of boundary operators,
u ∈ R

du is the solution to the differential equation, f (x) is a forcing function, gk(x)
is a set of boundary functions, x is an input vector in the domain � ⊂ R

d (i.e. x is
a d-dimensional vector), ∂� denotes the boundary of � and λ is an optional vector
of additional parameters of the differential operator. Many different physical systems
can be described in this form, including problems with time-dependence or time-
independence, linear or nonlinear differential operators, and different types of initial
and boundary conditions such as Dirichlet and Neumann conditions. As an example,
the inhomogeneous wave equation with Dirichlet and Neumann boundary conditions
at t = 0 reads

[
∇2 − 1

c2
∂2

∂t2

]
u(x, t) = f (x, t) ,

u(x, 0) = g1(x) ,

∂u

∂t
(x, 0) = g2(x) ,

(2)

where c is the wave speed (note, for all time-dependent problems described in this
paper, we have labelled the time dimension separately from the spatial dimensions of
the input vector for readability).

123

https://github.com/benmoseley/FBPINNs

62 Page 6 of 39 B. Moseley et al.

Given the problem definition in Equation1, PINNs train a neural network, denoted
as NN (x; θ) where θ denotes the free parameters of the neural network, to directly
approximate the solution to the differential equation, i.e. NN (x; θ) ≈ u(x). To solve
the problem, the network is trained by minimising the following loss function:

L(θ) = Lp(θ) + Lb(θ) , (3)

where

Lp(θ) = 1

Np

Np∑
i

‖D[NN (xi ; θ); λ] − f (xi) ‖2 , (4)

Lb(θ) =
∑
k

1

Nbk

Nbk∑
j

‖Bk[NN (xk j ; θ)] − gk(xk j) ‖2 , (5)

{xi } is a set of training points sampled over the full domain �, and {xk j } is a set of
training points sampled from the boundary �k associated with each boundary con-
dition. We denote the first term, Lp(θ), as the “physics loss” and the second term,
Lb(θ), as the “boundary loss”. Intuitively, the physics loss pushes the neural net-
work to learn solutions which are consistent with the underlying differential equation,
whilst the boundary loss attempts to ensure the solution is unique bymatching the solu-
tion to the boundary conditions. For the wave equation example above, Equation3
becomes

L(θ) = 1

Np

Np∑
i

‖
[
∇2 − 1

c2
∂2

∂t2

]
NN (xi , ti ; θ) − f (xi , ti) ‖2

+ 1

Nb1

Nb1∑
j

‖ NN (x1 j , 0; θ)−g1(x1 j) ‖2+ 1

Nb2

Nb2∑
j

‖ ∂

∂t
N N (x2 j , 0; θ)

−g2(x2 j) ‖2 . (6)

There are a number of important points to consider when training PINNs. The first
is that a sufficient number of training points {xi } and {xk j } should be selected such
that the network is able to learn a consistent solution across the entire domain. For
large domains, training points are often sampled in mini-batches and the optimisation
problem becomes a stochastic optimisation problem.

Secondly, when evaluating the loss function, the gradients of the neural network
with respect to its inputs are required. These are typically analytically available, and
this allows the loss function to be evaluated and further differentiated with respect
to θ , allowing gradient descent methods to be used to optimise θ . In practice, these
gradients are easily obtainable in modern deep learning packages through the use of
autodifferentiation (AD). For example, when using the PyTorch library [56], one
can use reverse or forward-mode AD to obtain a computational graph for computing
the gradients of a network’s output with respect to its inputs and then use AD again on
this graph to obtain gradients of the PINN loss function with respect to the parameters
of the network.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 7 of 39 62

Thirdly, it is important to note that whilst the known values of the solution (and/or
its derivatives) are required at the domain boundaries to evaluate the boundary loss,
evaluating the physics loss only requires samples of the input vector, i.e. it can be
viewed as an unsupervised regularisation term, and therefore, PINNs require very
little training data in this sense.

Finally, PINNs can be naturally extended to inverse problems, for example when
estimating the parameters of the differential equation λ. In this setting, an additional
“data loss” is usually added, which penalises the difference between the network solu-
tion and the solution at a set of observed points within the domain, and the parameters
λ are jointly optimised alongside θ .

2.1 Weakly vs strongly constrained PINNs

A downside of the standard PINN approach described above is that the boundary con-
ditions are only weakly enforced in the loss function described by Equation3, meaning
that the learned solution may be inconsistent. Furthermore, recent work has shown
theoretically and empirically that the PINN optimisation problem can be stiff to solve,
to the point where it may not converge at all, due to the two terms in the loss function
competingwith each other [17, 36, 37].An alternative approach, as originally proposed
by [12], is to strictly enforce the boundary conditions by using the neural network as
part of a solution ansatz. For example, for the wave equation problem above, instead of
defining a neural network to directly approximate the solution NN (x, t; θ) ≈ u(x, t),
one could instead use the ansatz

û(x, t; θ) = g1(x) + t g2(x) + t2 NN (x, t; θ) , (7)

to define the approximate solution in the PINN optimisation problem. It is straight-
forward to verify that this ansatz automatically satisfies the boundary conditions in
Equation2. Because the boundary conditions are automatically satisfied, only the
physics loss, Lp(θ), needs to be included in Equation3, which turns the optimisation
problem from a constrained one into a simpler unconstrained one. This formulation
has since been extended to irregular domains [57, 58], and general schemes for con-
structing suitable ansatze have been proposed [59]. We will use this strategy for the
rest of the examples in the paper, although we note that the FBPINN framework is not
limited to this approach and can use both formulations.

3 Amotivating example

As discussed in Section 1, a major challenge is to scale PINNs to large domains. In this
section,wewill show a simple empirical 1D example highlighting this difficulty,which
motivates the FBPINN framework. Specifically, we consider the following problem:

du

dx
= cos(ωx) ,

u(0) = 0 ,

(8)

123

62 Page 8 of 39 B. Moseley et al.

where x, u, ω ∈ R
1, which has the exact solution

u(x) = 1

ω
sin(ωx) . (9)

We will use the PINN solution ansatz

û(x; θ) = tanh(ωx)NN (x; θ) , (10)

to solve this problem. We choose to use the tanh function in the ansatz because away
from the boundary condition, its value tends to ±1, such that the neural network does
not need to learn to dramatically compensate for this function away from the boundary.
We also approximately match the width of the tanh function to the wavelength of the
exact solution, again such that the compensation the network needs to learn in the
vicinity of the boundary is of similar frequency to the solution. In our subsequent
experiments, we find both of these strategies help PINNs converge over large domains
and different solution frequencies.

The PINN is trained using the unconstrained loss function

L(θ) = Lp(θ) = 1

Np

Np∑
i

‖ d

dx
û(xi ; θ) − cos(ωxi) ‖2 , (11)

as derived using Equation4.

3.1 Low-frequency case (! = 1)

First, the above PINN is trained for the ω = 1 case. We use a fully connected network
with 2 hidden layers, 16 hidden units per layer and tanh activation functions, using
200 training points ({xi }) regularly spaced over the domain x ∈ [−2π, 2π]. The input
variable x is normalised to [−1, 1] over the domain before being input to the network,
and the output of the network is unnormalised by multiplying it by 1

ω
before being

used in the ansatz defined by Equation10. The PINN is trained using gradient descent
with the Adam optimiser [60] and a learning rate of 0.001. All code is implemented
using the PyTorch library, using its autodifferentiation features [56].

Figure 1 (a) and (e) shows the PINN solution after training and its L1 error compared
to the exact solution (evaluated using 1000 regularly spaced points in the domain) as
a function of training step. We find that the PINN is able to quickly and accurately
converge to the exact solution.

3.2 High-frequency case (! = 15)

Next, the same experiment is run, but with two changes; we increase the frequency
of the solution to ω = 15 and the number of regularly spaced training points to
200 × 15 = 3000. Figure1 (b) and (e) shows the resulting PINN solution and L1
convergence curve (using 5000 test points). We find for this case the PINN is unable

123

Finite basis physics-informed neural networks (FBPINNs)... Page 9 of 39 62

Fig. 1 Using PINNs to solve du
dx = cos(ωx). When ω = 1, a PINN with 2 hidden layers and 16 hidden

units quickly converges to the solution: (a) shows the PINN solution compared to the exact solution, and (e)
shows the L1 error between the PINN solution and the exact solution against training step. When ω = 15,
the same PINN struggles to converge, as shown in (b). Increasing the number of free parameters of the
PINN improves its accuracy, as shown in (c) and (d)

to accurately learn the solution, only being able to capture the first few cycles of the
solution away from the boundary condition. We further retrain the PINN using larger
network sizes of 4 layers and 64 hidden units and 5 layers and 128 hidden units,
shown in Fig. 1 (c) and (d), and find that only the PINN with 5 layers and 128 hidden
units is able to fully model all of the cycles, although its final relative L1 error is
much worse than the ω = 1 case and its convergence curve is much slower and more
unstable. We note that theω = 1 PINNwith 2 layers and 16 hidden units uses 321 free
parameters whilst the ω = 15 PINN with 5 layers and 128 hidden units uses 66,433
free parameters.

3.3 Remarks

Whilst the PINN performs well for low frequencies, it struggles to scale to higher fre-
quencies; the higher frequency PINN requires many more free parameters, converges
much more slowly and has worse accuracy. Multiple significant and related factors
contribute to this issue. One is that as the complexity of the solution increases, the
network requires more free parameters to accurately represent it, making the optimisa-
tion problem harder. Another is that as the frequency increases, more training sample
points are required to sufficiently sample the domain, again making the optimisation
problem harder. Third is the spectral bias of neural networks, which is the observa-

123

62 Page 10 of 39 B. Moseley et al.

tion that neural networks tend to learn higher frequencies much more slowly than low
frequencies, a property which has been rigorously studied. Compounding these factors
is the fact that, as the size of the network, number of training points, and convergence
time grow, the computational resources required increase significantly.

It is important to note that for this problem, scaling to higher frequencies is equiva-
lent to scaling to larger domain sizes. Because we have normalised the input variable
to [−1, 1] within the domain before inputting it to the network, keeping ω = 1 but
expanding the domain size by 15 times and re-normalising presents the same optimisa-
tion problem to the neural network as changingω to 15. Indeed, increasing the domain
size and scaling to higher frequencies are related problems, and the above case study
highlights a general observation of PINNs: as the domain size increases, the PINN
optimisation typically becomes much harder and takes much longer to converge.

Another important note is that classical methods also typically scale poorly to large
domain sizes/higher frequencies. For example, when solving the problem above, the
number of mesh points required by standard finite difference modelling would scale
∝ ωd . However, FD modelling would not suffer from the additional PINN-related
problems described above of many more free parameters in the optimisation problem
and slower convergence due to spectral bias.

In the next section, we will present FBPINNs, which, as we shall see in Section 5,
are able to solve the case study above much more accurately and efficiently than the
PINNs studied.

4 Finite basis physics-informed neural networks (FBPINNs)

4.1 Workflow overview

FBPINNs are a general domain decomposition approach for solving large, multi-
scale problems relating to differential equations. The main goal of FBPINNs is to
address the scaling issues of PINNs described above, which is achieved by using a
combination of domain decomposition, subdomain normalisation and flexible training
schedules. In this subsection,we give an overviewof FBPINNs before giving a detailed
mathematical description in Section 4.2.

The FBPINN workflow is shown in Fig. 2. In FBPINNs, the problem domain is
divided into overlapping subdomains. A neural network is placed within each subdo-
main such that within the center of the subdomain, the network learns the full solution,
whilst in the overlapping regions, the solution is defined as the sumover all overlapping
networks. Before being summed, each network is multiplied by a smooth, differen-
tiable window function which locally confines it to its subdomain. In addition to this,
the input variables of each network are separately normalised over each subdomain,
and we can define flexible training schedules which allow us to restrict which subdo-
main networks are updated at each gradient descent training step (described in more
detail in Section 4.3).

By dividing the domain into many subdomains, the single, large PINN optimisation
problem is turned into many smaller subdomain optimisation problems. By using
separate subdomain normalisation (as well as a domain decomposition appropriate for

123

Finite basis physics-informed neural networks (FBPINNs)... Page 11 of 39 62

the complexity of the solution), we ensure that the effective solution frequency each
subdomain optimisation problem sees is low. The use of flexible training schedules
allows us to focus on solving smaller parts of the domain sequentially instead of all of
them at once. Our hypothesis is that all three of these strategies alleviate the scaling
issues described above, leading to an easier global optimisation problem.

With any domain decomposition technique, it is important to ensure that the indi-
vidual neural network solutions are communicated and match across the subdomain
interfaces. In FBPINNs, during training, the neural networks share their solutions
in the overlap regions between subdomains, and by mathematically constructing our
global solution as the sum of these solutions, we automatically ensure the solution is
continuous across subdomains. This approach allows FBPINNs to use a similar loss
function to PINNs, without requiring the use of additional interface loss terms, in
contrast to other domain decomposition approaches (e.g. [48]).

Finally, FBPINNs can be trained in a highly parallel fashion, decreasing their train-
ing times, and we present an algorithm for doing so in Section 4.4. FBPINNs are
inspired by classical finite element methods (FEMs), where the solution of the differ-
ential equation is expressed as the sum of a finite set of basis functions with compact
support, althoughwe note that FBPINNs use the strong form of the governing equation
as opposed to the weak form in FEMs.

4.2 Mathematical description

We will now give a detailed mathematical description of FBPINNs. In FBPINNs,
the problem domain � ⊂ R

d is subdivided into n overlapping subdomains, �i ⊂ �.
FBPINNs can use any type of subdivision, regular or irregular, with any overlap width,
as long as the subdomains overlap.An example subdivision, a regular hyperrectangular
division, is shown in Fig. 2. For simplicity, we use this type of division for the rest of
this work.

Given a subdomain definition, the following FBPINN solution ansatz is used to
define the approximate solution to the problem defined by Equation1

û(x; θ) = C [
NN (x; θ)

]
, (12)

where

NN (x; θ) =
n∑
i

wi (x) · unnorm ◦ NNi ◦ normi (x) , (13)

NNi (x; θi) is a separate neural network placed in each subdomain �i , wi (x) is a
smooth, differentiable window function that locally confines each network to its sub-
domain, C is a constraining operator which adds appropriate “hard” constraints to the
ansatz such that it satisfies the boundary conditions (following the same procedure
described in Section 2.1), normi denotes separate normalisation of the input vector
x in each subdomain, unnorm denotes a common unnormalisation applied to each
neural network output, and θ = {θi }.

The purpose of the window function is to locally confine each neural network
solution, NNi , to its subdomain. Any differentiable function can be used, as long as it

123

62 Page 12 of 39 B. Moseley et al.

Fig. 2 FBPINN workflow. FBPINNs use domain decomposition and separate subdomain normalisation to
address the issues related to scaling PINNs to large domains. First, the problem domain is divided into over-
lapping subdomains; an example 2D hyperrectangular subdivision is shown. Next, separate neural networks
are placed within each subdomain. Each network is locally confined to its subdomain by multiplying it with
a differentiable window function, such that within the center of the subdomain, the network learns the full
solution to the differential equation, whilst in the overlapping regions, the solution is defined as the sum over
all overlapping networks. For each network, the input variables x = (x1, x2, ...) are normalised between
[-1,1] over the subdomain, and the output of the network is unnormalised using a common unnormalisation.
Finally, an optional constraining operator C can be applied which appropriately constrains the ansatz such
that it automatically satisfies the boundary conditions

is (negligibly close to) zero outside of the subdomain and greater than zero within it.
For all the problems studied in this paper, which all use hyperrectangular subdomains,
we use the following window function:

wi (x) =
d∏
j

φ((x j − a j
i)/σ

j
i)φ((b j

i − x j)/σ
j
i) , (14)

where j denotes each dimension of the input vector, a j
i and b j

i denote the midpoint of

the left and right overlapping regions in each dimension (where a j
i < b j

i , i.e. the black

lines in Fig. 2), φ(x) = 1
1+e−x is the sigmoid function, and σ

j
i is a set of parameters

defined such that the window function is (negligibly close to) zero outside of the
overlap region.

The window function is an important choice when defining FBPINNs. In particular,
whilst any window function can be used, the window function for each subdomain
network should sufficiently overlap with the window functions of its neighbouring
subdomains, so that the network can communicate its solution and boundary values.
Empirically, we find that larger overlaps lead to improved accuracy, although the
computational cost is higher as more subdomain network evaluations are required in
the overlapping regions.

The individual normalisation, normi in Equation13, for each subdomain is applied
by normalising the input vector between [−1, 1] in each dimension over the subdomain
before it is input to the network, whilst the common output unnormalisation unnorm
is chosen such that each neural network output stays within the range [−1, 1] and
depends on the solution itself.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 13 of 39 62

Finally, any neural network can be used to define NNi (x; θi); in this paper, for
simplicity, we only consider fully connected neural networks.

Given the ansatz defined by Equation12, FBPINNs are trained using the uncon-
strained loss function

L(θ) = Lp(θ) = 1

Np

Np∑
i

‖D[û(xi ; θ); λ] − f (xi) ‖2 , (15)

using a set of training points {xi } sampled over the full domain �. This loss function
is the same form as used when training the strongly constrained PINNs described
in Section 2.1 and notably does not require the use of additional interface terms by
construction of our ansatz. Alternatively, the constraining operator C in the FBPINN
ansatz can be removed and the corresponding “weak” loss function (cf Equation3)
used to train FBPINNs, in a similar fashion to PINNs.

4.3 Flexible training schedules

Alongside the issues with scaling PINNs to large domains described in Section 3,
another issue is the difficulty of ensuring that thePINNsolution learnt far away from the
boundary is consistent with the boundary conditions. More precisely, it is conceivable
that, early-on in training, the PINN could fixate on a particular solution which is
inconsistent with the boundary condition at a location in the domain far away from
the boundary, because the network has not yet learnt the consistent solution closer to
the boundary to constrain it. With two different particular solutions being learned, the
optimisation problem could end up in a localminima, resulting in a harder optimisation
problem. Indeed, we find evidence for this effect in our numerical experiments (in
particular, Sections5.2.4 and 5.5). Thus, for some problems, it may make sense to

Fig. 3 Flexible training schedules for FBPINNs. We can design flexible training schedules which can help
to improve the convergence of FBPINNs. These schedules define which subdomain networks are updated
during each training step. Within these schedules, we define “active” models, which are the networks which
are currently being updated; “fixed” models, which are networks which have already been trained and
have their free parameters fixed; and “inactive” models which are as-of-yet untrained networks. The plots
above show one particular training schedule designed to learn the solution “outwards” from the boundary
condition, which in this case is assumed to be along the left edge of the domain. Note that during each
training step, only training points from the active subdomains are required, shown by the coloured regions
in the plot

123

62 Page 14 of 39 B. Moseley et al.

sequentially learn the solution “outwards” from the boundary, in a similar fashion to,
for example time-marching schemes employed in classical methods.

FBPINNs allow for such functionality, which is easy to implement because of their
domain decomposition. At any point during training, we can restrict which subdomain
networks are updated and can therefore design flexible training schedules to suit a
particular boundary problem. An example training schedule is shown in Fig. 3. Within
a training schedule, we define “active” models, which are the networks which are
currently being updated; “fixed” models, which are networks which have already
been trained and have their free parameters fixed; and “inactive” models which are
as-of-yet untrained networks. During each training step, only active models and their
fixed neighbours contribute to the summation in the FBPINN ansatz, and only training
points within the active subdomains are sampled.

Algorithm 1 PyTorch psuedocode for a single global FBPINN training step

1) Get NN output and gradients in each subdomain
Can use separate thread for each subdomain (indexed by ‘‘im’’)
for im in active_or_fixed_neighbour_models:

x[im] = sample_subdomain_points(im)
x_norm = (x[im] - x_mu[im]) / x_sd[im]
u[im] = NN[im](x_norm)
u[im] = u[im]*u_mu + u_sd
u[im] = windows[im] * u[im]
g[im] = problem.get_gradients(u[im], x[im])

2) Sum NN outputs in overlapping regions
Requires communication between threads
for im in active_models:

for iseg in overlapping_regions[im]:
for im2 in overlapping_models[iseg]:

if im2 != im:
u[im][iseg] += u[im2][iseg].detach()
g[im][iseg] += g[im2][iseg].detach()

3) Apply hard boundary conditions, compute loss,
backpropagate and update free parameters
Can use separate thread for each subdomain
for im in active_models:

u[im], g[im] = problem.boundary(u[im], g[im])
loss = problem.physics_loss(x[im], u[im], g[im])
loss.backward()
optimizers[im].step()

4.4 Parallel implementation

The FBPINN optimisation problem defined by Equation15 is solved by using gradient
descent, similar to PINNs. This can be naively implemented within a single, global
optimisation loop, but in practice, we can train FBPINNs in a highly parallel and more
data-efficient way by taking advantage of the domain decomposition. In this section,
we describe a parallel implementation of FBPINNs.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 15 of 39 62

There are two key considerations when parallelising FBPINNs. First is that, outside
of eachneural network’s subdomain, its output is always zero after thewindow function
has been applied, which means that training points outside of the subdomain will
provide zero gradients when updating its free parameters. Thus, only training points
within each subdomain are required to train each network, which allows training to
be much more data-efficient. Second is that multiple parts of each training step can
be implemented in parallel; a separate thread for each network can be used when
calculating their outputs and gradients with respect to the input vector, and once the
network outputs in overlapping regions have been summed, a separate thread for
each network can be used to backpropagate the loss function and update their free
parameters. This allows the training time to be dramatically reduced.

We nowdescribe the parallel training algorithm in detail.We use a standard gradient
descent training algorithm, consisting of a number of identical gradient descent steps
implemented inside afor loop. The pseudocode for each global training step is shown
in Algorithm 1, and a schematic of how each training step affects each subdomain is
shown in Fig. 4. Each training step consists of three distinct steps. First, for each
subdomain, training points are sampled throughout the subdomain, normalised and
input into the subdomain network. The output of the network is unnormalised, multi-
plied by the window function, and its appropriate gradients (depending on the specific
problem) with respect to the input variables are computed using autodifferentiation.
Second, for training points which intersect the overlapping regions between subdo-
mains, the network outputs and gradients are shared across subdomains and summed.
Third, for each subdomain, the constraining operator is applied to the summed solution

Fig. 4 Visual schematic of a single FBPINN training step for each subdomain. Training can be carried
out in parallel across subdomains, and communication between subdomains is only required during step 2
where each subdomain network must share its outputs with its neighbouring subdomains

123

62 Page 16 of 39 B. Moseley et al.

and its gradients, the loss function is computed using these quantities, and the free
parameters of the network are updated using backpropagation.

We note that because each network has an independent set of free parameters,
the computational graph can be discarded (or “detached”) for all outputs shared in
its overlapping regions except its own, allowing the backpropagation operation to be
implemented in parallel without needing communication. Another note is that wemust
ensure that the same training data points are used in the overlapping regions for each
network such that their solutions can be summed.

This parallel design makes training FBPINNs highly scalable. As the problem size
grows, more subdomains can be added, and each subdomain can be trained on a sepa-
rate thread. If the number of training points per subdomain and size of each subdomain
network stays constant, the computational cost of the global FBPINN training step
grows linearly with the number of subdomains. Each subdomain thread can be placed
on a separate GPU, allowing multi-GPU training if necessary. As discussed above, the
only communication required between threads is the sharing of subdomain outputs
within overlapping regions.

5 Numerical experiments

5.1 Overview of experiments

In this section, we carry out a number of experiments to test the accuracy and efficiency
of FBPINNs. We are interested in how FBPINNs scale to larger problem sizes, and
our experiments range from smaller to larger problems, both in terms of their domain
size and dimensionality. Problems with multi-scale solutions are included.

First, in Section 5.2, FBPINNs are tested on the motivating 1D example problem
presented in Section 3 (that of learning the solution to du

dx = cosωx). Harder versions
of this problem are introduced, including one with a multi-scale solution and another
using second-order derivatives in the underlying differential equation. In summary,
we find that FBPINNs are able to accurately and efficiently learn the solutions to these
problemswhenω is high, significantly outperformingPINNs. InSection 5.3,we extend
the motivating 1D problem to 2D, learning the solution to the equation ∂u

∂x1
+ ∂u

∂x2
=

cos(ωx1) + cos(ωx2) when ω is high. Again, the FBPINN significantly outperforms
the PINN tested. In Section 5.4, we test FBPINNs on a standard PINN benchmark
problem, which is the (1+1)D viscous time-dependent Burgers equation. In this case,
the FBPINN matches the accuracy of the PINN tested, whilst being significantly
more data-efficient. Finally, in Section 5.5, we learn the solution to the (2+1)D time-
dependent wave equation for a high-frequency point source propagating through a
medium with a non-uniform wave speed, which is the most challenging problem
studied here. Whilst the PINN tested exhibits unstable convergence, the FBPINN
using a time-marching training schedule is able to robustly converge to the solution.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 17 of 39 62

Some of the FBPINN settings and hyperparameters are fixed across all experi-
ments. Specifically, the same optimiser (Adam [60]), learning rate (0.001), network
type (fully connected), network activation function (tanh), type of subdomain division
(hyperrectangular) andwindow function (as defined in Equation14) are used across all
experiments. The relevant corresponding aspects are also fixed and the same across all
of the PINNbenchmarks used.Other settings and hyperparameters, such as the number
of training steps, number of training points, number of hidden layers, number of hidden
units, number of subdomains, overlapping width of each subdomain, output unnor-
malisation and training schedule, vary depending on the problem, and for some case
studies, we show ablations of them. For clearer comparison, we always use the same
training point sampling scheme and density for both PINNs and FBPINNs, the same
unnormalisation of their network outputs and the same constraining operator when
forming their ansatze. The PINN input variable is always normalised between [−1, 1]
in each dimension across the problem domain before being input to the network. The
PINNs are implemented within the same coding framework as the FBPINNs, which
uses the PyTorch library [56]. All 1D problems are trained using a single CPU core,
whilst all other problems are trained using a single NVIDIA Titan V GPU. For this
work, we only use a single thread when training FBPINNs, although this thread does
exactly implement the parallel training algorithm described in Section 4.4. Evaluating
the multi-threaded performance of our parallel algorithm will be the subject of future
work.

5.2 1D sinusoidal experiments

First, we test FBPINNs using the motivating 1D problem described in Section 3
(Equation8). The following FBPINN ansatz is used:

û(x; θ) = tanh(ωx)NN (x; θ) , (16)

which uses the same constraining operator as the PINN ansatz defined in Equation10.

5.2.1 Low-frequency case (! = 1)

For the low-frequency case, the domain x ∈ [−2π, 2π] is divided into n = 5 over-
lapping subdomains shown in Fig. 5 (c). Each subdomain is defined such that all of
their overlapping regions have a width of 1.3 and their associated window functions
(as defined in Equation14) are also shown in Fig. 5 (c). Each subdomain network has
2 hidden layers and 16 hidden units per layer. Similar to the PINN in Section 3.1,
the output of each subdomain network is unnormalised by multiplying it by 1

ω
before

summation, and the FBPINN is trained using 50,000 training steps and 200 training
points regularly spaced over the domain. An “all-active” training schedule is used,
where all of the subdomain networks are active every training step. The FBPINN has
1605 free parameters in total.

123

62 Page 18 of 39 B. Moseley et al.

Fig. 5 Performance of FBPINNs on the problem du
dx = cos(ωx) when ω = 1. For this case, we find the

FPINN described in Section 5.2.1 has similar performance to the ω = 1 PINN in Section 3.1 (shown in
Fig. 1 (a)). The individual FBPINN subdomain solutions after training are shown in (a). The full FBPINN
solution compared to the exact solution is shown in (b). The FBPINN subdomain definition, overlapping
regions in the domain (thick pink lines), and window function for each subdomain are shown in (c). The L1
error between the FBPINN solution and the exact solution against training step is shown in (d) and (e). Also
shown in (d) and (e) are the convergence curves for a FBPINN trained with a smaller subdomain overlap
width and the ω = 1 PINN from Section 3.1

Figure 5 (a) shows the individual network solutions after training and Fig. 5 (b)
shows the full FBPINN solution. For ease of interpretation, each individual network
plot in Fig. 5 (a) shows the output of each subdomain network just before summation
but with the constraining operator (tanh(ωx)·) applied. Figure5 (d) compares the L1
convergence curve of the FBPINN to the L1 convergence curve of the low-frequency
PINN (with 2 layers and 16 hidden units) studied in Section 3.1. Figure5 (e) shows the
same curve against the cumulative number of training FLOPS required during forward
inference of the subdomain networks, which is a measure of data-efficiency1. For this
case study, we find that the FBPINN is able to solve the problem as accurately and
with a similar data-efficiency to the PINN.

For this case study,we also test the sensitivity of the FBPINN to different subdomain
overlap widths. Figure5 (d) and (e) show the convergence curve for the same FBPINN
but with its subdomains defined such that all overlapping regions have a width of 0.2.
In this case, the FBPINN has similar performance.

5.2.2 High-frequency case (! = 15)

Next, we test the performance of the FBPINN when ω = 15 which is a much harder
problem, as discussed in Section 3. For this case, we divide the domain into n =
1 Note, this measure only counts FLOPS spent during the forward inference of the networks and does
not count FLOPS spent during gradient computation, backpropagation or any other part of the training
algorithm. See Appendix A for the exact formula used.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 19 of 39 62

30 equally spaced subdomains with overlapping widths of 0.3, as shown in Fig. 6
(c). The subdomain network size is kept the same as the case above at 2 layers and
16 hidden units per layer, and the same “all-active” training schedule is used. The
FBPINN has 9630 free parameters in total. Similar to the high-frequency PINNs
tested in Section 3.2, the number of regularly spaced training points is increased to
200 × 15 = 3000. We compare the FBPINN to the best performing high-frequency
PINN from Section 3.2, namely the PINN with 5 layers and 128 hidden units.

Figure 6 shows the same plots as Fig. 5 for this case. We find that, in stark contrast
to the PINN, the FBPINN is able to converge to the solution with very high accuracy in
very few training steps. Furthermore, training the FBPINN requires multiple orders of
magnitude less forward inference FLOPS than the PINN. This is because it uses much
smaller network sizes in each of its subdomains, dramatically reducing the amount of
computation required.

As an additional benchmark, we compare the FBPINN to a PINN where the input
vector is transformed using Fourier features [45] before being input to the PINN (see
Appendix B for themathematical definition of these Fourier features). Fourier features
can help neural networks learn high-frequency functions [45], and they have been
shown to help the convergence of PINNs [44]. A PINN with 3 layers and 32 hidden
units (similar to the PINNs in Section 3.2) is trained using 32 Fourier features with
frequencies randomly sampled from a Gaussian distribution with a mean equal to the
frequency of the solution (ω = 15) and a standard deviation of 10. Figure6(d) shows
the resulting L1 convergence curve of the PINN. We find that the Fourier features
significantly improve the performance of the PINN; however, its rate of convergence
and final L1 error remains worse than the FBPINN.

Fig. 6 Performance of FBPINNs on the problem du
dx = cos(ωx) when ω = 15. The FBPINN described in

Section 5.2.2 is compared to the best-performing ω = 15 PINN in Section 3.2 (namely the PINN with 5
layers and 128 hidden units, shown in Fig. 1 (d)). For this case, we find the FPINN significantly outperforms
the PINN, converging to the solution with much higher accuracy and much less training steps. This plot has
the same layout as Fig. 5

123

62 Page 20 of 39 B. Moseley et al.

5.2.3 Multi-scale case

We extend the difficulty of this problem by including multi-scale frequency compo-
nents in its solution. Specifically, we consider the modified problem

du

dx
= ω1 cos(ω1x) + ω2 cos(ω2x) ,

u(0) = 0 ,

(17)

which has the exact solution

u(x) = sin(ω1x) + sin(ω2x) . (18)

Here, we chose ω1 = 1 and ω2 = 15, i.e. the solution contains both a high- and
low-frequency component.

The same FBPINN and PINN from Section 5.2.2 are retrained for this problem,
except that their loss functions are modified to use the differential equation above,
unnormalisation is applied to both by multiplying their network outputs by 2, and ω2
is used in their ansatz constraining operator (tanh(ω2x)·). For this case, we also train
PINNs with smaller network sizes, namely 2 layers and 16 hidden units and 4 layers
and 64 hidden units.

The FBPINN individual network solutions, the FBPINN full solution and the three
PINN solutions are shown in Fig. 7 (a), (b), (c), (d) and (e) respectively, and their L1
convergence curves are compared in Fig. 7 (f) and (g). Similar results are observed
to Section 5.2.2: in stark contrast to the PINNs, the FBPINN is able to converge to
the solution with a much higher accuracy in a much smaller number of training steps.
Whilst the PINNs with 4 and 5 layers are able to model all of the cycles in the solution,
their accuracy is nearly two orders of magnitude worse than the FBPINN, and their
convergence curve is much more unstable.

Similar to Section 5.2.2, we compare the FBPINN to a PINN with Fourier input
features. The same PINN with Fourier features from Section 5.2.2 is retrained for this
problem, and its L1 convergence curve is shown in Fig. 7 (f). Similar results are found,
namely that the Fourier features significantly improve the performance of the PINN;
however, its rate of convergence and final L1 error remains worse than the FBPINN.

5.2.4 Second-order derivative case

Wealso extend the difficulty of this problem by changing the underlying equation from
a first-order differential equation to a second-order equation. Namely, we consider the
related problem

d2u

dx2
= sin(ωx) ,

u(0) = 0 ,

du

dx
(0) = − 1

ω
,

(19)

123

Finite basis physics-informed neural networks (FBPINNs)... Page 21 of 39 62

Fig. 7 Performance of FBPINNs on the multi-scale problem du
dx = ω1 cos(ω1x) + ω2 cos(ω2x) where

ω1 = 1 and ω2 = 15. The FBPINN described in Section 5.2.3 is compared to three different PINNs which
have 2 layers and 16 hidden units, 4 layers and 64 hidden units and 5 layers and 128 hidden units. Similar
to Fig. 6, the FBPINN significantly outperforms the PINNs tested. The individual FBPINN subdomain
solutions after training are shown in (a). The full FBPINN solution is shown in (b). The three PINN
solutions are shown in (c)–(e). The L1 errors of the FBPINN and PINN solutions compared to the exact
solution are shown in (f) and (g)

which has the exact solution

u(x) = − 1

ω2 sin(ωx) . (20)

We use the FBPINN ansatz

û(x; θ) = − 1

ω2 tanh(ωx) + tanh2(ωx)NN (x; θ) , (21)

such that the boundary conditions are satisfied and the same construction for the PINN
ansatz. Alike Section 5.2.2, we consider the high-frequency case ω = 15.

The same FBPINN and PINN from Section 5.2.2 are retrained for this problem,
except for the changes to the problem definition above, and that the outputs of the
FBPINN and PINN networks are unnormalised by multiplying them by 1

ω2 . We also
train both networks for twice as long (100,000 steps).

The resulting FBPINN and PINN solutions are shown in Fig. 8 (c) and (a), along
with their second-order derivatives in Fig. 8 (d) and (b). We find that both methods
struggle to accurately model the solution, although the FBPINN is able to capture
all of its cycles. Whilst both models learn the solution accurately in the vicinity of

123

62 Page 22 of 39 B. Moseley et al.

Fig. 8 Performance of FBPINNs on the problem d2u
dx2

= sin(ωx)withω = 15. Two FBPINNswith different
training schedules are tested for this problem.Thefirst has an “all-active” training schedule,where allmodels
are active all of the time, and its resulting solution and second-order derivative are shown in (c) and (d).
The second uses a “learning outwards” training schedule which slowly expands the active model outwards
from the boundary condition at x = 0 as training progresses (as depicted in (g) and (h)), and its solution
and second-order derivative are shown in (e) and (f). Both FBPINNs use the subdomain definition shown
in Fig. 6 (c), and are compared to a PINN with 5 layers and 128 hidden units, shown in (a) and (b)

the boundary condition, they learn it poorly outside of it. One explanation is that
both models are suffering from integration errors; a small error in the second-order
derivative (which is being penalised in the loss function) can lead to large errors in the
solution. Indeed, both models learn much more accurate second-order derivatives, as
seen in Fig. 8. Another explanation is that away from the boundary, the FBPINN and
PINN are fixating on a different (and incorrect) particular solution of the underlying
equation. In particular, away from the boundary, the FBPINN solution appears to be
superimposed with a linear function of the input variable, which is a feasible solution
under this differential equation (but is not consistent with the boundary conditions).

To improve the FBPINN solution further, we retrain the FBPINN using a training
schedule that allows the solution to be “learned outwards” from the boundary condi-
tion. The schedule starts with only the two models in the center of the domain being

123

Finite basis physics-informed neural networks (FBPINNs)... Page 23 of 39 62

active and then slowly expands the active model outwards in the positive and negative
directions, fixing the previously active models behind them, as shown in Fig. 8 (g)
and (h). In this case, 500,000 training steps are used (equating to 33,333 training steps
per active model). The resulting solution and its second-order derivative are shown in
Fig. 8 (e) and (f). We find that this FBPINN performs best, accurately modelling the
solution many cycles away from the boundary condition, although small errors remain
at the edges of the domain.

5.3 2D sinusoidal experiments

In this section, we study the extension of the motivating problem above from 1D to
2D. Specifically, we consider the problem

∂u

∂x1
+ ∂u

∂x2
= cos(ωx1) + cos(ωx2) ,

u(0, x2) = 1

ω
sin(ωx2) ,

(22)

where x = (x1, x2) ∈ R
2, u ∈ R

1, with a problem domain x1 ∈ [−2π, 2π], x2 ∈
[−2π, 2π]. This problem has the exact solution

u(x1, x2) = 1

ω
sin(ωx1) + 1

ω
sin(ωx2) . (23)

We use the FBPINN ansatz

û(x1, x2; θ) = 1

ω
sin(ωx2) + tanh(ωx1)NN (x1, x2; θ) , (24)

such that the boundary conditions are satisfied, using the same constraining operator
for the PINN ansatz. Similar to Section 5.2.2, we consider the high-frequency case
ω = 15. Note that the solution along the second dimension x2 is already provided
in the ansatz, and so the FBPINN and PINN only need to learn to correct the ansatz
along the first dimension (although x2 is still input to the networks and so they could
still learn an incorrect solution along the second dimension).

For the FBPINN, we divide the 2D domain into n = 15×15 = 225 equally spaced
subdomains with overlapping widths of 0.6, as shown in Fig. 9 (g). Each subdomain
network has 2 layers and 16 hidden layers, andwe use the “all-active” training schedule
defined above. For the PINN, a network with 5 layers and 128 hidden units is chosen.
The FBPINN has 75,825 free parameters whilst the PINN has 66,561 free parameters.
The FBPINN and PINN are both unnormalised by multiplying their network outputs
by 1

ω
, and both are trained using 900×900 = 810,000 training points regularly spaced

throughout the domain and 50,000 training steps. 1000× 1000 regularly sampled test
points throughout the domain are used when computing their L1 error compared to
the exact solution.

Figure 9 (c) shows the exact solution, Fig. 9 (b) and a show the FBPINN and PINN
solutions and Fig. 9 (f) and (e) show their difference to the exact solution. The FBPINN

123

62 Page 24 of 39 B. Moseley et al.

Fig. 9 Performance of FBPINNs on the problem ∂u
∂x1

+ ∂u
∂x2

= cos(ωx1) + cos(ωx2) with ω = 15. The
FBPINN described in Section 5.3 is compared to a PINN with 5 layers and 128 hidden units. Similar to the
1D sinusodial problems above, we find that the FBPINN significantly outperforms the PINN tested. The
FBPINN subdomain definition is shown in (g). The exact solution is shown in (c). The FBPINN solution
and its difference to the exact solution are shown in (b) and (f), and a similar set of plots for the PINN are
shown in (a) and (e). The L1 errors of the FBPINN and PINN solutions compared to the exact solution are
shown in (d) and (h)

and PINN convergence curves are compared in Fig. 9 (d) and (h). Similar observations
to Section 5.2.2 can be made: the FBPINN is able to converge to the solution with
much higher accuracy and much less training steps than the PINN; whilst the PINN
is able to model all of the cycles of the solution, its accuracy is over one order of
magnitude worse than the FBPINN; because a much smaller subdomain network size
is used in the FBPINN, training the FBPINN requires multiple orders of magnitude
less forward inference FLOPS than the PINN.

5.4 (1+1)D Burgers equation

In this section, the FBPINN is tested using a standard PINN benchmark problem,
which is the (1+1)D viscous time-dependent Burgers equation, given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

u(x, 0) = − sin(πx) ,

u(−1, t) = 0 ,

u(+1, t) = 0 ,

(25)

where x, t, u, ν ∈ R
1, with a problem domain x ∈ [−1, 1], t ∈ [0, 1]. Interestingly,

for small values of the viscosity parameter, ν, the solution develops a discontinuity
at x = 0 as time increases. We use ν = 0.01/π such that this is the case. The exact
solution is analytically available by the use of the Hopf-Cole transform (see [61] for
details, which are omitted here for brevity).

123

Finite basis physics-informed neural networks (FBPINNs)... Page 25 of 39 62

To solve the problem, we use the FBPINN ansatz

û(x, t; θ) = − sin(πx) + tanh(x + 1) tanh(x − 1) tanh(t)NN (x, t; θ) , (26)

such that the boundary conditions are satisfied, using the same constraining operator
for the PINN ansatz.

For the FBPINN, we divide the 2D domain into n = 4 × 2 = 8 equally spaced
subdomains with overlapping widths of 0.4, as shown in Fig. 10 (a). We purposefully
coincide the subdomain interfaceswith the discontinuity in the solution at x = 0, to test
how the domain decomposition affects the solution accuracy across the discontinuity.
Each subdomain network has 2 layers and 16 hidden layers, andwe use the “all-active”
training schedule. For the PINN, a network with 4 layers and 64 hidden units is used,
as in testing, we found smaller networks performed worse. The FBPINN has 2696
free parameters whilst the PINN has 12,737 free parameters. The FBPINN and PINN
are both unnormalised by multiplying their network outputs by 1, and both are trained
using 200×200 = 40,000 training points regularly spaced throughout the domain and

Fig. 10 Performance of FBPINNs on the (1+1)D viscous time-dependent Burgers equation. The exact
solution is shown in (i). Two FBPINNs with different subdomain definitions are tested. The first uses a
subdomain definition where the subdomain interfaces coincide with the discontinuity in the exact solution,
shown in (a). The second uses a definition where the interfaces avoid the discontinuity, shown in (b). Both
FBPINNs are compared to a PINN with 4 layers and 64 hidden units. The coinciding FBPINN solution and
its difference to the exact solution are shown in (d) and (g). Similar sets of plots for the avoiding FBPINN
and PINN are shown in (e) and (h) and (c) and (f) respectively. The L1 errors of the FBPINN and PINN
solutions compared to the exact solution are shown in (j) and (k). We find that the coinciding FBPINN has
slightly worse accuracy than the PINN, whilst the avoiding FBPINN has slightly better accuracy

123

62 Page 26 of 39 B. Moseley et al.

50,000 training steps. 400× 400 regularly sampled test points throughout the domain
are used when computing their L1 error compared to the exact solution.

Figure 10 (i), (d) and (c) show the exact, FBPINN and PINN solutions respectively,
and Fig. 10 (g) and (f) show the difference of the FBPINN and PINN solutions to the
exact solution. Figure10 (j) and (k) show the L1 convergence curves of the FBPINN
and PINN. We observe that the FBPINN solution is slightly less accurate across the
discontinuity than the PINN, although its overall convergence is more stable. Whilst
the FBPINN is able to model the discontinuity, it appears that the window function and
summation of networks does make it harder for the FBPINN to model the solution in
this region. To avoid this issue,we retrain the FBPINNusing 6 overlapping subdomains
with interfaces which do not coincide with the discontinuity, as shown in Fig. 10 (b).
The resulting solution, difference and convergence curves are shown in Fig. 10 (e),
(h), (j) and (k), and we find that this FBPINN is able to more accurately model the
discontinuity with a slightly higher overall accuracy than the PINN. Furthermore,
as observed above, because a much smaller subdomain network size is used in the
FBPINNs, training both FBPINNs requires multiple orders of magnitude less forward
inference FLOPS than the PINN.

5.5 (2+1)D wave equation

Finally, we test the FBPINN using the (2+1)D time-dependent wave equation, mod-
elling the dynamics of an initially stationary point source propagating through
a medium with a non-uniform wave speed. Specifically, we solve the following
problem:

[
∇2 − 1

c(x)2
∂2

∂t2

]
u(x, t) = 0 ,

u(x, 0) = e− 1
2 (‖x−μ‖/σ)2 ,

∂u

∂t
(x, 0) = 0 ,

(27)

where x, μ ∈ R
2, t, u, σ ∈ R

1, c(x) ∈ R
1 is the spatially varying wave speed,

and μ and σ control the starting location and central frequency of a Gaussian point
source. The wave speed c(x) is defined as a simple mixture of 2D Gaussian dis-
tributions and is shown in Fig. 11 (d). For this case, we use the problem domain
x1 ∈ [−10, 10], x2 ∈ [−10, 10], t ∈ [0, 10] and set μ = (0, 0) and σ = 0.3.
Modelling the wave equation can be challenging in general because its solutions are
typically broadband, oscillatory and dispersive in nature and can include reflections,
refractions, wavefront compression and expansion through different velocity regions
and a large range of amplitudes [62]. For this case, the solution (or “wavefield”)
expands outwards from the point source, compressing and expanding as it moves
through regions with different wave speeds. We compare our results to the solution

123

Finite basis physics-informed neural networks (FBPINNs)... Page 27 of 39 62

Fig. 11 Setup and convergence curves for the (2+1)D time-dependent wave equation problem. The FBPINN
subdomain definition is shown in (a), (b) and (c), where the plots show orthogonal cross-sections through
the middle of the domain. The spatially varying wave speed is shown in (d). The L1 errors of the FBPINN
and PINN solutions compared to the solution from finite difference modelling are shown in (e) and (f))

from finite difference (FD) modelling (see Appendix C for our detailed implementa-
tion), which is shown in Fig. 12 (a)–(d) for 4 time steps spanning the domain.

To solve the problem, we use the FBPINN ansatz

û(x, t; θ) = φ(5(2 − t/t1)) e
− 1

2 (‖x−μ‖/σ)2 + tanh2(t/t1)NN (x, t; θ) , (28)

where φ(·) is the sigmoid function and t1 = σ/c(μ). This ansatz is designed such
that at t = 0, the sigmoid function is (negligibly close to) 1, allowing the ansatz to
match the boundary conditions. At times t 	 2 t1, the sigmoid function is (negligibly
close to) 0, removing the point source term from the ansatz. This is done so that the
FBPINN does not need to learn to correct for this part of the ansatz once the point
source has expanded away from its starting location. The same constraining operator
is used for the PINN ansatz.

For the FBPINN,we divide the 3Ddomain into n = 3×3×4 = 36 subdomainswith
overlappingwidths of 6 in the spatial dimensions and 2 in the time dimension, as shown
in Fig. 11 (a)–(c). Each subdomain network has 4 layers and 64 hidden layers. For this
problem,we use a “time-marching” training schedule, where initially only subdomains
in the first time-step are active, before slowly expanding the active time-step outwards
and fixing the earlier time-step models. For the PINN a network with 5 layers and 128
hidden units is chosen. The FBPINN has 460,836 free parameters whilst the PINN has
66,689 free parameters. The FBPINN and PINN are both unnormalised bymultiplying
their network outputs by 1, and both are trained using 58 × 58 × 58 = 195,112
training points randomly sampled throughout the domain. The PINN is trained for
75,000 training steps, whilst the FBPINN is trained for 150,000 steps (equating to
37,500 training steps per active model). For this case, we chose random sampling over

123

62 Page 28 of 39 B. Moseley et al.

Fig. 12 Performance of FBPINNs on the (2+1)D time-dependent wave equation problem. The FBPINN
described in Section 5.5 is compared to a PINN with 5 layers and 128 hidden units. We find that the
FBPINN and PINN have similar accuracy, although the FBPINN converges more robustly to the solution
(see Fig. 13). The solution at 4 time-steps spanning the domain from finite difference modelling is shown
in (a)–(d). The PINN solution at these time-steps is shown in (e)–(h), and the FBPINN solution at these
time-steps is shown in (m)–(p). The difference of the PINN solution to the solution from finite difference
modelling is shown in (i)–(l), and similar difference plots for the FBPINN are shown in (q)–t

regular sampling because the training point density is relatively low compared to the
frequency of the solution and in testing this allowed for better convergence of both
the FBPINN and PINN. 100 × 100 × 10 regularly sampled test points throughout
the domain are used when computing their L1 error compared to the finite difference
solution.

Figure 12 (e)–(h) and (m)–(p) show the resulting PINN and FBPINN solutions
respectively over 4 time steps spanning the problem domain. Figure12 (i)–(l) and (q)–
(t) show their difference compared to the finite difference solution, and Fig. 11 (e) and
(f) show their L1 convergence curves. We find that the FBPINN and PINN solutions
have a similar accuracy, although the FBPINN takes roughly half as many forward
inference FLOPS to train as the PINN, because its subdomain network size is smaller.
We also test a FBPINN using a smaller subdomain network size (2 layers and 16

123

Finite basis physics-informed neural networks (FBPINNs)... Page 29 of 39 62

hidden units, the same as all previous examples), but this does not converge, as shown
in the convergence plots in Fig. 11 (e) and (f). Whilst the PINN appears suitable for
this problem, we plot the PINN and FBPINN solutions midway through training in
Fig. 13. We find that whilst the FBPINN robustly learns the solution outwards from
t = 0 as its time-marching training schedule progresses, even after 20,000 training
steps, the PINN solution is still close to zero everywhere apart from the boundary

Fig. 13 FBPINNandPINNsolutions during training for the (2+1)D time-dependentwave equation problem.
The solution from finite difference modelling is shown in (a)–(d) (repeated from Fig. 12). The FBPINN
solution at training step 50,000 and 100,000 aswell as the PINN solution at training step 20,000 are plotted in
(e)–(h), (l)–(o) and (s)–(v) respectively using the same 4 time steps. Whilst the FBPINN robustly learns the
solution outwards from t = 0 as its time-marching training schedule progresses, even after 20,000 training
steps, the PINN solution is still close to zero everywhere apart from the boundary condition. Orthogonal
cross sections of the active, fixed and inactive FBPINN subdomains through the center of the domain during
the time-marching training schedule are shown for each FBPINN training step in (i)–(k) and (p)–(r)

123

62 Page 30 of 39 B. Moseley et al.

condition. This can also been seen in the convergence curve for the PINN in Fig. 11
(e), where its L1 error actually increases until approximately training step 40,000. One
explanation for this is that the PINN is fixating on a different (incorrect) particular
solution away from the boundary early-on in training, namely the easier particular
solution u(x, t) = 0, causing the optimisation to become stuck in a local minima.

As a final test, we retrain the PINN using Fourier input features. Specifically, 128
Fourier features are used with frequencies randomly sampled from a Gaussian distri-
bution with a mean equal to the dominant frequency of the solution (ω = 2π/σ) and
a standard deviation of 10. The L1 convergence curve of the PINN is shown in Fig. 11
(e). In this case, we find that the PINN is not able to converge.

6 Discussion

The numerical tests above confirm that FBPINNs provide a promising approach for
scaling PINNs to large domains. They are able to accurately solve all of the smaller
and larger scale problems studied, whilst in many cases, the standard PINN strug-
gles. For the problems studied with smaller domains, such as the Burgers equation
and the low-frequency sinusoidal problem, the FBPINN generally matches the PINN
in performance. For the problems with larger domains, such as the wave equation
and high-frequency sinusodial case studies, the FBPINN outperforms the PINN. The
largest differences are seen in the high-frequency sinusoidal problems,where across all
tests, the FBPINN converges with much higher accuracy and much less training steps
than the PINN. For the wave equation problem, the FBPINN more robustly converges
to the solution. These findings demonstrate that the combined use of domain decom-
position, separate subdomain normalisation and flexible training schedules helps to
alleviate some of the major issues related to scaling PINNs to large domains.

FBPINNs also appear to be more data-efficient than standard PINNs. Across all
experiments, we find that FBPINNs are able to converge using smaller network sizes
in their subdomains than the network size required by PINNs. The total number of
forward inference FLOPS required during training of FBPINNs only depends on the
subdomain network size and not the number of subdomains (see Appendix D for
proof), and thus the FBPINNs studied here require much less computation than the
PINNs to train them. This is likely because of their “divide and conquer” strategy; each
subdomain appears to present an easier optimisation problem which only requires a
small number of free parameters to solve. Indeed, FBPINNs with more subdomains
and smaller network sizes than those tested could be even more data-efficient, and in
the future, we plan to study in detail how reducing the subdomain size further affects
their accuracy and whether there is an optimal subdomain and network size to use
(e.g. similar to h-p refinement in FEM).

It is important to note that each problem studied requires different configurations
of the FBPINN to converge well. For example, for the high-frequency 1D first-order
sinusoidal problem, a FBPINN with an “all-active” training schedule performs well,
whilst for the second-order variant, a FBPINN with a “learning outwards” training
schedule is required to learn an accurate solution. Similarly, a subdomain network
size of 2 layers and 16 hidden units is effective for every problem except the wave

123

Finite basis physics-informed neural networks (FBPINNs)... Page 31 of 39 62

equation, which requires a larger network size given its subdomain definition. Thus,
it appears important to fine-tune the FBPINN to each particular problem. This may
be because different scaling issues affect each problem differently. We also find that
the FBPINN performs slightly worse for the Burgers equation problem when its sub-
domain interfaces coincide with the discontinuity in the solution, and therefore care
must be taken when choosing the subdomain division.

Whilst we have focused on the issues related to scaling PINNs to large domains,
another important consideration is the scaling of PINNs to higher dimensions. Similar
to classical methods, a major challenge is likely to be the exponentially increasing
number of (training) points required to sample the domain as the number of dimensions
increases. It is important to note that domain decompositionmay still help to reduce the
complexity of the ensuing optimisation problem, and indeed, FBPINNs are effective
across all of the 1D, 2D and 3D problems studied. However, FBPINNs still require
the same number of training points as standard PINNs, and so issues such as the
increased computational workload required are likely to remain. Specific to FBPINNs,
the number of overlapping models summed in each overlapping region using the
hyperrectangular subdivision grows exponentially with the number of dimensions,
which could negatively affect the underlying FBPINN optimisation problem. We plan
to investigate the scaling of FBPINNs to higher dimensions in future work.

A future direction is to study the performance of the multi-threaded version of
FBPINNs in detail. For the single-threaded implementation of our parallel training
algorithm used here, the FBPINNs are typically 2 to 10 times slower to train than their
corresponding PINNs, despite the FBPINNs beingmore data-efficient. This is because
the single thread updates each subdomain network sequentially and also because each
subdomain has a small network size and number of training points, meaning that the
parallelism of theGPU is not fully utilised. Themulti-threaded version (as described in
Section 4.4) should reduce these training times by a factor proportional to the number
of subdomains and yield a significant performance increase. A potential bottleneck is
that each subdomain thread must wait for its neighbouring subdomain threads to run
before summing the solution in its overlapping regions; this step could be made fully
asynchronous by, e.g. caching the “latest available” outputs from the neighbouring
subdomains instead of necessarily waiting for their outputs at the current training
step.

Another important direction is to test FBPINNs using irregular domains and sub-
domains. This is an essential step in many state-of-the-art classical approaches, and
FBPINNs are readily extendable in this regard. The same FBPINN framework can
be used, and only the subdomain window functions and the functions which sample
points from each subdomain and define the neighbours and overlapping regions of
each subdomain in the parallel training algorithm (Algorithm 1) need to be changed.
Going further, one could draw inspiration from classical methods where adaptive grids
are used to solve multi-scale problems; it may be useful to adaptively change the sub-
domain definition and/or subdomain network in FBPINNs to dynamically fit to the
solution. It is also important to note that in comparison to classical methods, where
mesh refinement can be highly non-trivial, this could be relatively simple to implement
using the mesh-free environment of FBPINNs.

123

62 Page 32 of 39 B. Moseley et al.

Many other directions for applying and improving FBPINNs are possible. For
example, FBPINNs could be used to solve inverse problems in the same way as
PINNs, and it would be interesting to compare their performance. There are many
other types of differential equations which could be tested. Whilst we use simple fully
connected subdomain networks here, other architectures and activation functions could
be investigated. Another promising direction would be to use transfer learning within
our flexible training schedules, for example by using neighbouring fixed models to
initialise the free parameters of newly active models, which may improve accuracy
and reduce training times further.

Amajor goal in the field of SciML is to provideML tools which are practically use-
ful for real-world problems and can extend or complement existing classical methods.
For PINNs, one of the key remaining challenges is computational efficiency; training a
PINN typically takes much more computational resources than using finite difference
methods or FEM. Specifically for our wave equation problem in Section 5.5, training
the PINN/single-threaded FBPINN takes of the order of 10h on a single GPU, whilst
FD modelling takes of the order of 1min on a single CPU. We noted above that the
data efficiency of FBPINNs increases as the size of its subdomain network decreases,
and therefore, with a small enough network size and a multi-threaded implementa-
tion, FBPINNs may be able to match the efficiency of finite difference methods or
FEM. It could also be powerful to combine efforts to learn families of solutions, such
as the DeepONets mentioned above, with FBPINNs, allowing multiple large-scale
solutions to be learnt without needing to retrain FBPINNs. Ultimately, this may lead
to approaches that are faster and more accurate than classical methods, opening up
many new potential applications. We also believe that standard benchmarks should be
established to allow PINNs and their wide variety of derivatives to be more robustly
compared, which will help the field achieve this goal.

7 Conclusions

In this work, we presented FBPINNs, which are a scalable approach for solving
large problems related to differential equations. By using a combination of domain
decomposition, individual subdomain normalisation and flexible training schedules,
FBPINNs are able to alleviate some of the issues observedwhen scaling PINNs to large
domains and/or multi-scale solutions, such as the increased complexity of the optimi-
sation problem and the spectral bias of neural networks.We found that FBPINNs were
able to accurately solve both the smaller and larger scale problems studied, including
those with multi-scale solutions. Furthermore, FBPINNs are more data-efficient than
PINNs, and they can be trained in a parallel fashion, which could eventually allow
them to become more competitive with classical approaches such as finite difference
or finite element methods. In future work, we plan to study the performance of the
multi-threaded version of FBPINNs, as well as adaptive subdomain refinement to
further improve their accuracy and efficiency.

123

Finite basis physics-informed neural networks (FBPINNs)... Page 33 of 39 62

Appendix A: Forward inference FLOPS calculation

To compare the computational resources required to train PINNs and FBPINNs, we
use a measure which we call the forward inference FLOPS. This is simply the number
of FLOPS spent during forward inference of their neural network(s) (i.e. evaluating
the function NN (x; θ) for PINNs or NN (x; θ) for FBPINNs).

For a fully connected neural network with tanh activations and a linear output layer,
as used here, we assume the number of flops F spent during forward inference of the
network is

F = N ((2d + 6)h + (l − 1)(2h + 6)h + (2h + 1)du) , (A1)

where N is the number of training points input to the network (or the batch size), d is
the dimensionality of the input vector, du is the dimensionality of the output vector,
h is the number of hidden units and l is the number of hidden layers. To see this, we
note that the computation of each network layer consists of a matrix-matrix multiply,
addition of the bias vector, and application of the activation function. For the first layer
of the network, thematrix-matrixmultiply requires 2Ndh operations, the bias addition
requires Nh operations and we assume the tanh operation requires 5Nh operations.
Similar calculations follow for the remaining layers and hence EquationA1 follows.

For PINNs, we use EquationA1 directly to estimate the forward inference FLOPS
required for each training step. For FBPINNs, the forward inference FLOPS required
for each training step are calculated by summing over all n subdomain networks used
in the current training step, i.e. F = ∑n

i Fi .
This gives a measure of data efficiency during training. However, we note it only

counts FLOPS spent during the forward inference of the networks and does not count
any additional FLOPS spent during gradient computation, backpropagation or any
other parts of the training algorithm.

Appendix B: Definition of Fourier features

Wecompare the performance of FBPINNs to PINNswith Fourier features for a number
of experiments. Fourier features have been shown to help neural networks learn high-
frequency functions [45] and help PINNs converge [44]. When using Fourier features,
the inputs of neural networks are transformed using trigonometric functions before
inputting them into the network. These Fourier features are given by

γ (x) = [cos(�x), sin(�x)] , (B2)

where � is a matrix of shape k × d, k is the number of Fourier features and x is the
input vector x ∈ R

d . The values of � represent the frequency of the features, and
they are typically sampled from a univariate Gaussian distribution with a mean and
standard deviation denoted by μ and σ .

As shown in [45] and [44], a key choice when using Fourier features are the values
of μ and σ . In particular, the value of σ significantly affects the frequency of the
leading eigenvectors of the neural network’s neural tangent kernel [64]. If σ is too
low, the network may take a long time to learn high-frequency features, whilst if σ is

123

62 Page 34 of 39 B. Moseley et al.

too high, it may over-fit its training data. In this study, we choose μ and σ empirically
by scanning over them and selecting the values which produce the lowest L1 test error.

Appendix C: Finite differencemodelling for (2+1)D wave equation

When studying the (2+1)D wave equation (Section 5.5) we use finite difference
modelling as the ground truth solution. The SEISMIC_CPML library [63] is used
(specifically, the SEISMIC_CPMLcode)which performs staggered-grid second-order
finite difference modelling of the time-dependent 2D acoustic wave equation using a
convolutional perfectly matched layer (PML) boundary condition at the edges of the
domain. For ease of use, we re-implemented the original Fortran code in Python. The
simulation is initialised by sampling the spatially varying wave speed, initial wavefield
and initial wavefield derivative as defined in Section5.5 on a regular 694×694×1891
grid (x1 × x2 × t). A high density of grid points (∼ 5× spatial Nyquist frequency) is
used so that the simulation is high-fidelity. An additional 10 grid points are used to
define the PML boundary, which are cropped from the final solution before comparing
it to the solution from the PINN and FBPINN.

Appendix D: Scaling of computational cost with number of
subdomains

A noteable aspect of FBPINNs is that, for a fixed domain, if the number of training
points stays constant, the total number of forward inference FLOPS required to evalu-
ate the FBPINN ansatz only depends on the number of free parameters (size) of each
subdomain network and not on the number of subdomains.

To see this, we note that only training points within each subdomain are needed
to train each subdomain network (as described by Section4.4). Thus, as the number
of subdomains is increased, assuming that the proportion of the domain covered by
overlapping regions stays constant, the same number of neural network evaluations are
required to evaluate the FBPINN ansatz over the entire domain. This means that only
the number of free parameters (size) of each subdomain network, and not the number
of subdomains, affects the total number of forward inference FLOPS required.

Acknowledgements Wewould like to thank theEPSRCandAIMSCDTfor supporting thiswork.Thiswork
makes use of the BURGERS_SOLUTION code written by John Burkardt (link) and the SEISMIC_CPML
library [63].

Author Contributions Contributions (CRediT taxonomy) BM: conceptualisation, formal analysis, investi-
gation, methodology, software, validation, visualisation, writing - original draft. AM, TNM: supervision,
writing - review and editing.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich. This work was
funded by theUKRI EPSRCCenter for Doctoral Training inAutonomous IntelligentMachines and Systems
(AIMS CDT).

Data Availibility All our training/test data were generated synthetically, and all the code required to repro-
duce this data and our results is available here: https://github.com/benmoseley/FBPINNs.

123

https://people.sc.fsu.edu/~jburkardt/py_src/burgers_solution/burgers_solution.html
https://github.com/benmoseley/FBPINNs

Finite basis physics-informed neural networks (FBPINNs)... Page 35 of 39 62

Declarations

Competing of interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Giorgi, F.: Thirty years of regional climate modeling: where are we and where are we going next?
Journal of Geophysical Research: Atmospheres 124(11), 5696–5723 (2019). https://doi.org/10.1029/
2018JD030094

2. Prein, A.F., Langhans,W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr,
O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., Van Lipzig, N.P.M., Leung, R.: A review on regional
convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys.
53(2), 323–361 (2015). https://doi.org/10.1002/2014RG000475

3. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Baner-
jee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H.,
Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A.,
Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano,
F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gomez Cadenas, J.J., Gonzalez, I.,
Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger,
P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A.,
Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent,
P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara,
V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E.,
Minamimoto, K.,Mora de Freitas, P.,Morita, Y.,Murakami, K., Nagamatu,M., Nartallo, R., Nieminen,
P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A.,
Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada,
Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M.,
Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P.,
Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright,
D., Yamada, T., Yoshida, H., Zschiesche, D.: GEANT4 - a simulation toolkit. Nuclear Instruments
and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

4. Jasak, H.: OpenFOAM: open source CFD in research and industry. International Journal of Naval
Architecture and Ocean Engineering 1(2), 89–94 (2009). https://doi.org/10.2478/ijnaoe-2013-0011

5. Leng, K., Nissen-Meyer, T., van Driel, M., Hosseini, K., Al-Attar, D.: AxiSEM3D: broad-band seismic
wavefields in 3-D global earth models with undulating discontinuities. Geophys. J. Int. 217(3), 2125–
2146 (2019). https://doi.org/10.1093/gji/ggz092

6. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction.
In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542.
Springer, (2009)

7. Rasp, S., Pritchard, M.S., Gentine, P.: Deep learning to represent subgrid processes in climate models.
Proc. Natl. Acad. Sci. U. S. A. 115(39), 9684–9689 (2018). arXiv:1806.04731. https://doi.org/10.1073/
pnas.1810286115

8. Moseley, B., Nissen-Meyer, T., Markham, A.: Deep learning for fast simulation of seismic waves in
complex media. Solid Earth 11(4), 1527–1549 (2020). https://doi.org/10.5194/se-11-1527-2020

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2018JD030094
https://doi.org/10.1029/2018JD030094
https://doi.org/10.1002/2014RG000475
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.2478/ijnaoe-2013-0011
https://doi.org/10.1093/gji/ggz092
http://arxiv.org/abs/1806.04731
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.5194/se-11-1527-2020

62 Page 36 of 39 B. Moseley et al.

9. Kasim, M.F., Watson-Parris, D., Deaconu, L., Oliver, S., Hatfield, P., Froula, D.H., Gregori, G., Jarvis,
M.,Khatiwala, S.,Korenaga, J., Topp-Mugglestone, J.,Viezzer, E.,Vinko, S.M.:Buildinghigh accuracy
emulators for scientific simulations with deep neural architecture search. Machine Learning: Science
and Technology 3(1), 015013 (2022). arXiv:2001.08055. https://doi.org/10.1088/2632-2153/ac3ffa

10. Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H., Parashar, M., Patra, A.,
Sethian, J., Wild, S., Willcox, K., Lee, S.: Workshop report on basic research needs for scientific
machine learning: core technologies for artificial intelligence. Technical report, USDOE Office of
Science (SC) (United States) (2019). https://doi.org/10.2172/1478744. http://www.osti.gov/servlets/
purl/1478744/

11. Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V.: Integrating scientific knowledge with machine
learning for engineering and environmental systems. arXiv 1, 1 (2020). arXiv:2003.04919

12. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary
and partial differential equations. IEEE Transactions on Neural Networks 9(5), 987–1000
(1998).arXiv:9705023[physics]. https://doi.org/10.1109/72.712178

13. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

14. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed
machine learning. Nature Reviews Physics, 1–19 (2021). https://doi.org/10.1038/s42254-021-00314-
5

15. Cuomo, S., di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine
learning through physics-informed neural networks: where we are and what’s next. arXiv (2022).
arXiv:2201.05624

16. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure
fields fromflowvisualizations. Science 367(6481), 1026–1030 (2020). https://doi.org/10.1126/science.
aaw4741

17. Sun, L., Gao, H., Pan, S., Wang, J.X.: Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 361 (2020).
arXiv:1906.02382. https://doi.org/10.1016/j.cma.2019.112732

18. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-informed neural networks
for cardiac activation mapping. Frontiers in Physics 8, 42 (2020). https://doi.org/10.3389/fphy.2020.
00042

19. Moseley, B., Markham, A., Nissen-Meyer, T.: Solving the wave equation with physics-informed deep
learning. arXiv (2020). arXiv:2006.11894

20. Cai, S.,Wang, Z., Fuest, F., Jeon, Y.J., Gray, C., Karniadakis, G.E.: Flow over an espresso cup: inferring
3-Dvelocity and pressure fields from tomographic background oriented Schlieren via physics-informed
neural networks. J. FluidMech. 915, 102 (2021). arXiv:2103.02807. https://doi.org/10.1017/jfm.2021.
135

21. Yang, L., Meng, X., Karniadakis, G.E.: B-PINNs: Bayesian physics-informed neural networks for
forward and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109913 (2021). https://doi.
org/10.1016/j.jcp.2020.109913

22. Kharazmi, E., Zhang, Z., Karniadakis, G.E.M.: VPINNs: variational physics-informed neural networks
for solving partial differential equations. arXiv (2019). arXiv:1912.00873

23. Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-
dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys.
394, 56–81 (2019). arXiv:1901.06314. https://doi.org/10.1016/j.jcp.2019.05.024

24. Geneva, N., Zabaras, N.: Modeling the dynamics of PDE systems with physics-constrained deep auto-
regressive networks. J. Comput. Phys. 403, 109056 (2020). arXiv:1906.05747. https://doi.org/10.1016/
j.jcp.2019.109056

25. Gao, H., Sun, L., Wang, J.X.: PhyGeoNet: physics-informed geometry-adaptive convolutional neural
networks for solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 428,
110079 (2021). arXiv:2004.13145. https://doi.org/10.1016/j.jcp.2020.110079

26. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators. NatureMachine Intelligence 3(3), 218–229
(2021). https://doi.org/10.1038/s42256-021-00302-5

123

http://arxiv.org/abs/2001.08055
https://doi.org/10.1088/2632-2153/ac3ffa
https://doi.org/10.2172/1478744
http://www.osti.gov/servlets/purl/1478744/
http://www.osti.gov/servlets/purl/1478744/
http://arxiv.org/abs/2003.04919
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
http://arxiv.org/abs/2201.05624
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
http://arxiv.org/abs/1906.02382
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.3389/fphy.2020.00042
https://doi.org/10.3389/fphy.2020.00042
http://arxiv.org/abs/2006.11894
http://arxiv.org/abs/2103.02807
https://doi.org/10.1017/jfm.2021.135
https://doi.org/10.1017/jfm.2021.135
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
http://arxiv.org/abs/1912.00873
http://arxiv.org/abs/1901.06314
https://doi.org/10.1016/j.jcp.2019.05.024
http://arxiv.org/abs/1906.05747
https://doi.org/10.1016/j.jcp.2019.109056
https://doi.org/10.1016/j.jcp.2019.109056
http://arxiv.org/abs/2004.13145
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1038/s42256-021-00302-5

Finite basis physics-informed neural networks (FBPINNs)... Page 37 of 39 62

27. Wang, S., Wang, H., Perdikaris, P.: Learning the solution operator of parametric partial differ-
ential equations with physics-informed DeepONets. Science Advances 7(40), 8605–8634 (2021).
arXiv:2103.10974. https://doi.org/10.1126/sciadv.abi8605

28. Pang, G., Lu, L.U., Karniadakis, G.E.M.: FPinns: fractional physics-informed neural networks. SIAM
J. Sci. Comput. 41(4), 2603–2626 (2019). arXiv:1811.08967. https://doi.org/10.1137/18M1229845

29. Yang, L., Zhang, D., Karniadakis, G.E.: Physics-informed generative adversarial networks for stochas-
tic differential equations. SIAM J . Sci. Comput. 42(1), 292–317 (2020). arXiv:1811.02033. https://
doi.org/10.1137/18M1225409

30. Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-informed neural
networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019).
arXiv:1809.08327. https://doi.org/10.1016/j.jcp.2019.07.048

31. Chen, Z., Liu, Y., Sun, H.: Physics-informed learning of governing equations from scarce data. Nat.
Commun. 12(1), 1–13 (2021). arXiv:2005.03448. https://doi.org/10.1038/s41467-021-26434-1

32. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differ-
ential equations. SIAM Review 63(1), 208–228 (2021). arXiv:1907.04502. https://doi.org/10.1137/
19M1274067

33. Hennigh, O., Narasimhan, S., Nabian, M.A., Subramaniam, A., Tangsali, K., Rietmann, M., Ferrandis,
J.d.A., Byeon, W., Fang, Z., Choudhry, S.: NVIDIA SimNetT M : an AI-accelerated multi-physics
simulation framework. arXiv (2020) arXiv:2012.07938

34. Koryagin, A., Khudorozkov, R., Tsimfer, S.: PyDEns: a Python-framework for solving differential
equations with neural networks. arXiv (2019). arXiv:1909.11544

35. Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., Di Giovanni, M.: Neu-
roDiffEq: a Python package for solving differential equations with neural networks. Journal of Open
Source Software 5(46), 1931 (2020). https://doi.org/10.21105/joss.01931

36. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-
informed neural networks. SIAM J. Sci. Comput. 43(5), 3055–3081 (2021). arXiv:2001.04536. https://
doi.org/10.1137/20M1318043

37. Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: a neural tangent kernel perspective.
J. Comput. Phys. 449, 110768 (2022). arXiv:2007.14527. https://doi.org/10.1016/j.jcp.2021.110768

38. Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks
for linear second-order elliptic and parabolic type PDEs. Communications in Computational Physics
28(5), 2042–2074 (2020). arXiv:2004.01806. https://doi.org/10.4208/cicp.oa-2020-0193

39. Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks
for approximating PDEs. IMA J. Numer. Anal. 00, 1–43 (2022). arXiv:2006.16144. https://doi.org/10.
1093/imanum/drab093

40. Xu, Z.Q.J., Zhang, Y., Luo, T., Xiao, Y., Ma, Z.: Frequency principle: Fourier analysis sheds light
on deep neural networks. Communications in Computational Physics 28(5), 1746–1767 (2020).
arXiv:1901.06523. https://doi.org/10.4208/CICP.OA-2020-0085

41. Rahaman, N., Baratin, A., Arpit, D., Draxlcr, F., Lin, M., Hamprecht, F.A., Bengio, Y., Courville,
A.: On the spectral bias of neural networks. In: 36th International Conference on Machine Learning,
ICML 2019, vol. 2019-June, pp. 9230–9239. International Machine Learning Society (IMLS), (2019).
arXiv:1806.08734

42. Basri, R., Jacobs, D., Kasten, Y., Kritchman, S.: The convergence rate of neural networks for learned
functions of different frequencies. In: Advances in Neural Information Processing Systems, vol. 32.
Neural information processing systems foundation, (2019). arXiv:1906.00425

43. Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., Gu, Q.: Towards understanding the spectral bias of deep
learning. IJCAI (2021). arXiv:1912.01198

44. Wang, S.,Wang, H., Perdikaris, P.: On the eigenvector bias of Fourier feature networks: from regression
to solving multi-scale PDEs with physics-informed neural networks. Comput. Methods Appl. Mech.
Eng. 384, 113938 (2021). arXiv:2012.10047. https://doi.org/10.1016/j.cma.2021.113938

45. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoor-
thi, R., Barron, J.T., Ng, R.: Fourier features let networks learn high frequency functions in low
dimensional domains. In:Advances inNeural Information Processing Systems, vol. 2020-Decem.Neu-
ral information processing systems foundation, (2020). https://doi.org/10.48550/arxiv.2006.10739.
arXiv:2006.10739v1

123

http://arxiv.org/abs/2103.10974
https://doi.org/10.1126/sciadv.abi8605
http://arxiv.org/abs/1811.08967
https://doi.org/10.1137/18M1229845
http://arxiv.org/abs/1811.02033
https://doi.org/10.1137/18M1225409
https://doi.org/10.1137/18M1225409
http://arxiv.org/abs/1809.08327
https://doi.org/10.1016/j.jcp.2019.07.048
http://arxiv.org/abs/2005.03448
https://doi.org/10.1038/s41467-021-26434-1
http://arxiv.org/abs/1907.04502
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
http://arxiv.org/abs/2012.07938
http://arxiv.org/abs/1909.11544
https://doi.org/10.21105/joss.01931
http://arxiv.org/abs/2001.04536
https://doi.org/10.1137/20M1318043
https://doi.org/10.1137/20M1318043
http://arxiv.org/abs/2007.14527
https://doi.org/10.1016/j.jcp.2021.110768
http://arxiv.org/abs/2004.01806
https://doi.org/10.4208/cicp.oa-2020-0193
http://arxiv.org/abs/2006.16144
https://doi.org/10.1093/imanum/drab093
https://doi.org/10.1093/imanum/drab093
http://arxiv.org/abs/1901.06523
https://doi.org/10.4208/CICP.OA-2020-0085
http://arxiv.org/abs/1806.08734
http://arxiv.org/abs/1906.00425
http://arxiv.org/abs/1912.01198
http://arxiv.org/abs/2012.10047
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.48550/arxiv.2006.10739
http://arxiv.org/abs/2006.10739v1

62 Page 38 of 39 B. Moseley et al.

46. Liu, Z., Cai, W., Xu, Z.Q.J.: Multi-scale deep neural network (MscaleDNN) for solving Poisson-
Boltzmann equation in complex domains. Communications in Computational Physics 28(5), 1970–
2001 (2020). arXiv:2007.11207. https://doi.org/10.4208/CICP.OA-2020-0179

47. Heinlein, A., Klawonn, A., Lanser, M., Weber, J.: Combining machine learning and domain decompo-
sition methods for the solution of partial differential equations–a review. GAMM-Mitteilungen 44(1),
202100001 (2021). https://doi.org/10.1002/gamm.202100001

48. Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks (XPINNs): a generalized
space-time domain decomposition based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics 28(5), 2002–2041 (2020). https://doi.org/10.
4208/CICP.OA-2020-0164

49. Shukla, K., Jagtap, A.D., Karniadakis, G.E.: Parallel physics-informed neural networks via domain
decomposition. J. Comput. Phys. 447, 110683 (2021). arXiv:2104.10013. https://doi.org/10.1016/j.
jcp.2021.110683

50. Dwivedi, V., Parashar, N., Srinivasan, B.: Distributed learningmachines for solving forward and inverse
problems in partial differential equations. Neurocomputing 420, 299–316 (2021). https://doi.org/10.
1016/j.neucom.2020.09.006

51. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving linear
and nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021)
arXiv:2012.02895. https://doi.org/10.1016/j.cma.2021.114129

52. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocom-
puting 70(1–3), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

53. Li, K., Tang, K., Wu, T., Liao, Q.: D3M: a deep domain decomposition method for partial differential
equations. IEEE Access 8, 5283–5294 (2020). arXiv:1909.12236. https://doi.org/10.1109/ACCESS.
2019.2957200

54. Stiller, P., Bethke, F., Böhme, M., Pausch, R., Torge, S., Debus, A., Vorberger, J., Bussmann, M., Hoff-
mann, N.: Large-scale neural solvers for partial differential equations. In: Nichols, J., Verastegui, B.,
Maccabe, A.B., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) Driving Scientific and Engineering
Discoveries Through the Convergence of HPC, Big Data and AI, pp. 20–34. Springer, (2020)

55. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: variational physics-informed neural networks
with domain decomposition. Comput. Methods Appl. Mech. Eng. 374 (2021). arXiv:2003.05385.
https://doi.org/10.1016/j.cma.2020.113547

56. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learn-
ing library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d\textquotesingle Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Cur-
ran Associates, Inc., (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

57. Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems
with irregular boundaries. IEEE Transactions on Neural Networks 11(5), 1041–1049 (2000). https://
doi.org/10.1109/72.870037

58. Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial differential equations
in complex geometries. Neurocomputing 317, 28–41 (2018). arXiv:1711.06464. https://doi.org/10.
1016/j.neucom.2018.06.056

59. Leake,C.,Mortari,D.:Deep theory of functional connections: a newmethod for estimating the solutions
of partial differential equations. Machine Learning and Knowledge Extraction 2(1), 37–55 (2020).
https://doi.org/10.3390/make2010004

60. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015).
arXiv:1412.6980

61. Basdevant, C., Deville, M., Haldenwang, P., Lacroix, J.M., Ouazzani, J., Peyret, R., Orlandi, P., Patera,
A.T.: Spectral and finite difference solutions of the Burgers equation. Computers and Fluids 14(1),
23–41 (1986). https://doi.org/10.1016/0045-7930(86)90036-8

62. Igel, H.: Computational seismology: a practical introduction. Oxford University Press, (2017)
63. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing

incidence for the seismic wave equation. Geophysics 72(5), 155–167 (2007)

123

http://arxiv.org/abs/2007.11207
https://doi.org/10.4208/CICP.OA-2020-0179
https://doi.org/10.1002/gamm.202100001
https://doi.org/10.4208/CICP.OA-2020-0164
https://doi.org/10.4208/CICP.OA-2020-0164
http://arxiv.org/abs/2104.10013
https://doi.org/10.1016/j.jcp.2021.110683
https://doi.org/10.1016/j.jcp.2021.110683
https://doi.org/10.1016/j.neucom.2020.09.006
https://doi.org/10.1016/j.neucom.2020.09.006
http://arxiv.org/abs/2012.02895
https://doi.org/10.1016/j.cma.2021.114129
https://doi.org/10.1016/j.neucom.2005.12.126
http://arxiv.org/abs/1909.12236
https://doi.org/10.1109/ACCESS.2019.2957200
https://doi.org/10.1109/ACCESS.2019.2957200
http://arxiv.org/abs/2003.05385
https://doi.org/10.1016/j.cma.2020.113547
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/72.870037
http://arxiv.org/abs/1711.06464
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.3390/make2010004
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0045-7930(86)90036-8

Finite basis physics-informed neural networks (FBPINNs)... Page 39 of 39 62

64. Jacotécole, A., Jacotécole, J., Fédérale De Lausanne, P., Gabriel, F.: Neural tangent kernel: convergence
and generalization in neural networks. In: Advances in Neural Information Processing Systems, vol.
31 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
	Abstract
	1 Introduction
	2 Physics-informed neural networks (PINNs)
	2.1 Weakly vs strongly constrained PINNs

	3 A motivating example
	3.1 Low-frequency case (ω=1)
	3.2 High-frequency case (ω=15)
	3.3 Remarks

	4 Finite basis physics-informed neural networks (FBPINNs)
	4.1 Workflow overview
	4.2 Mathematical description
	4.3 Flexible training schedules
	4.4 Parallel implementation

	5 Numerical experiments
	5.1 Overview of experiments
	5.2 1D sinusoidal experiments
	5.2.1 Low-frequency case (ω=1)
	5.2.2 High-frequency case (ω=15)
	5.2.3 Multi-scale case
	5.2.4 Second-order derivative case

	5.3 2D sinusoidal experiments
	5.4 (1+1)D Burgers equation
	5.5 (2+1)D wave equation

	6 Discussion
	7 Conclusions
	Appendix A: Forward inference FLOPS calculation
	Appendix B: Definition of Fourier features
	Appendix C: Finite difference modelling for (2+1)D wave equation
	Appendix D: Scaling of computational cost with number of subdomains
	Acknowledgements
	References

