Skip to main content
Log in

Application of Machine Learning and Deep Learning in Finite Element Analysis: A Comprehensive Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Machine learning (ML) has evolved as a technology used in even broader domains, ranging from spam detection to space exploration, as a result of the boom in available data and affordable computing power in recent years. To find field variables in a domain under investigation, partial differential equations (PDEs) are solved using the numerical method known as finite element method (FEM). Problems in a variety of fields, including solid and fluid mechanics, material science, biomechanics, electronics, and geomechanics, have been solved using FEM. There are initiatives to apply ML approaches to the field of finite element analysis (FEA) due to the broad applicability of ML to numerous fields. The field of FEA is constrained by the length of time needed for modeling, the expense and length of time required for computing to solve the problem, and the necessity of considerable expert participation to understand the findings. These problems are frequently solved using ML approaches, according to evidence from ML applications. This work provides a thorough analysis of how ML has been applied in solid mechanics as an additional and beneficial tool to FEA. The goal is to demonstrate ML’s effectiveness in the FEA sector and to pinpoint areas that might use improvement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural network

CNN:

Convolutional neural network

CAI:

Compression-after-impact

CFRP:

Carbon fiber reinforced polymer

CNT:

Carbon nanotube

CFST:

Concrete-filled steel tubular

ERA:

Explosive reactive armour

DGM:

Deep Galerkin method

DL:

Deep learning

DNN:

Deep neural network

FE:

Finite element

FEA:

Finite element analysis

FEM:

Finite element method

GAN:

Generative adversarial network

GNN:

Graph neural network

KNN:

K-nearest neighbor

LSTM:

Long short-term memory

ML:

Machine learning

MLMM:

Machine learning material model

NURBS:

Non-uniform rational B-spline

ODE:

Ordinary differential equation

PDE:

Partial differential equation

PINN:

Physics informed neural network

RNN:

Recurrent neural network

RVE:

Representative volume element

SHM:

Structural health monitoring

SVM:

Support vector machine

References

  1. Russell SJ (2010) Artificial intelligence a modern approach. Pearson Education Inc, London

    Google Scholar 

  2. Abioye SO et al (2021) Artificial intelligence in the construction industry: a review of present status, opportunities and future challenges. J Build Eng 44:103299

    Article  Google Scholar 

  3. Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2:1–21

    Article  ADS  MathSciNet  Google Scholar 

  4. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559:547–555

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Deiana AM et al (2022) Applications and techniques for fast machine learning in science. Front Big Data 5:787421

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shailaja K, Seetharamulu B, Jabbar MA (2018) Machine learning in healthcare: a review, In: 2018 second international conference on electronics, communication and aerospace technology (ICECA), 910–914 (IEEE, Coimbatore, India)

  7. Qayyum A, Qadir J, Bilal M, Al-Fuqaha A (2020) Secure and robust machine learning for healthcare: a survey. IEEE Rev Biomed Eng 14:156–180

    Article  Google Scholar 

  8. Ahmed S, Alshater MM, El Ammari A, Hammami H (2022) Artificial intelligence and machine learning in finance: a bibliometric review. Res Int Bus Financ 61:101646

    Article  Google Scholar 

  9. Henrique BM, Sobreiro VA, Kimura H (2019) Literature review: machine learning techniques applied to financial market prediction. Exp Syst Appl 124:226–251

    Article  Google Scholar 

  10. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18:2674

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Shinde PP, Shah S (2018) A review of machine learning and deep learning applications. In: 2018 fourth international conference on computing communication control and automation (ICCUBEA). IEEE, Pune, India, pp 1–6

  12. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  Google Scholar 

  13. Theobald O (2017) Machine learning for absolute beginners: a plain English introduction. Scatterplot Press, London

    Google Scholar 

  14. Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229

    Article  MathSciNet  Google Scholar 

  15. Hebb DO (2005) The organization of behavior: a neuropsychological theory. Psychology Press, New York

    Book  Google Scholar 

  16. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27

    Article  Google Scholar 

  17. Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1:119–130

    Article  Google Scholar 

  18. Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition. IEEE, Montreal, Canada, pp 278–282

  19. Fradkov AL (2020) Early history of machine learning. IFAC-PapersOnLine 53:1385–1390

    Article  Google Scholar 

  20. Géron A (2022) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media Inc, Sebastopol

    Google Scholar 

  21. Liu WK, Li S, Park HS (2022) Eighty years of the finite element method: birth, evolution, and future. Arch Comput Methods Eng 29:4431–4453

    Article  Google Scholar 

  22. Bathe KJ (1996) Finite element procedures. Prentice Hall of India, New Delhi

    Google Scholar 

  23. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier, Amsterdam

    Google Scholar 

  24. Saha S et al (2021) Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering. Comput Methods Appl Mech Eng 373:113452

    Article  ADS  MathSciNet  Google Scholar 

  25. Ghaboussi J (2010) Advances in neural networks in computational mechanics and engineering. Advances of Soft Computing in Engineering. Springer, Vienna, pp 191–236

    Google Scholar 

  26. Berg J, Nyström K (2021) Neural networks as smooth priors for inverse problems for PDEs. J Comput Math Data Sci 1:100008

    Article  Google Scholar 

  27. Yoshimura S, Hishida H, Yagawa G (1992) Parameter optimization of viscoplastic constitutive equation using hierarchical neural network. In: Proceedings of 7th international conference on experimental mechanics (Nevada), pp 296–301

  28. Furukawa T, Yagawa G (1998) Implicit constitutive modelling for viscoplasticity using neural networks. Int J Numer Methods Eng 43:195–219

    Article  Google Scholar 

  29. Yoshimura S, Matsuda A, Yagawa G (1996) New regularization by transformation for neural network based inverse analyses and its application to structure identification. Int J Numer Methods Eng 39:3953–3968

    Article  Google Scholar 

  30. Oishi A et al (2001) Neural network-based inverse analysis for defect identification with laser ultrasonics. Res Nondestr Eval 13:79–96

    Article  Google Scholar 

  31. Liu SW, Huang JH, Sung JC, Lee CC (2002) Detection of cracks using neural networks and computational mechanics. Comput Methods Appl Mech Eng 191:2831–2845

    Article  ADS  Google Scholar 

  32. Yagawa G, Matsuda A, Kawate H, Yoshimura S (1995) Neural network approach to estimate stable crack growth in welded specimens. Int J Press Vessels Pip 63:303–313

    Article  CAS  Google Scholar 

  33. Yagawa G, Oishi A (2021) Computational mechanics with neural networks. Springer, Berlin

    Book  Google Scholar 

  34. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  35. Takeuchi J, Kosugi Y (1994) Neural network representation of finite element method. Neural Netw 7:389–395

    Article  Google Scholar 

  36. Yagawa G, Okuda H (1996) Finite element solutions with feedback network mechanism through direct minimization of energy functionals. Int J Numer Methods Eng 39:867–883

    Article  MathSciNet  Google Scholar 

  37. Okuda H, Yoshimura S, Yagawa G, Matsuda A (1998) Neural network-based parameter estimation for non-linear finite element analyses. Eng Comput 15:103–138

    Article  Google Scholar 

  38. Jenkins WM (1999) A neural network for structural re-analysis. Comput Struct 72:687–698

    Article  Google Scholar 

  39. Li S (2000) Global flexibility simulation and element stiffness simulation in finite element analysis with neural network. Comput Methods Appl Mech Eng 186:101–108

    Article  ADS  Google Scholar 

  40. Ziemiański L (2003) Hybrid neural network/finite element modelling of wave propagation in infinite domains. Comput Struct 81:1099–1109

    Article  Google Scholar 

  41. Gudur PP, Dixit US (2008) A neural network-assisted finite element analysis of cold flat rolling. Eng Appl Artif Intell 21:43–52

    Article  Google Scholar 

  42. Umbrello D, Ambrogio G, Filice L, Shivpuri R (2008) A hybrid finite element method-artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Mater Des 29:873–883

    Article  CAS  Google Scholar 

  43. Daoheng S, Qiao H, Hao X (2000) A neurocomputing model for the elastoplasticity. Comput Methods Appl Mech Eng 182:177–186

    Article  ADS  Google Scholar 

  44. Salehi H, Burgueño R (2018) Emerging artificial intelligence methods in structural engineering. Eng Struct 171:170–189

    Article  Google Scholar 

  45. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer, New York

    Google Scholar 

  46. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge

    Google Scholar 

  47. Steinwart I, Christmann A (2008) Support vector machines. Springer, Berlin

    Google Scholar 

  48. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  MathSciNet  Google Scholar 

  49. Awad M, Khanna R (2015) Efficient learning machines: theories, concepts, and applications for engineers and system designers. Apress, Berkeley

    Book  Google Scholar 

  50. Marsland S (2011) Machine learning: an algorithmic perspective. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  51. Haykin S (2009) Neural networks and learning machines. Pearson Education India, New Delhi

    Google Scholar 

  52. Kim DE, Gofman M (2018) Comparison of shallow and deep neural networks for network intrusion detection, In: 2018 IEEE 8th annual computing and communication workshop and conference (CCWC). IEEE, Las Vegas, USA, pp 204–208

  53. Alzubaidi L et al (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8:1–74

    Article  Google Scholar 

  54. Singh N, Sabrol H (2021) Convolutional neural networks-an extensive arena of deep learning. A comprehensive study. Arch Comput Methods Eng 28:4755–4780

    Article  Google Scholar 

  55. Goodfellow I et al (2020) Generative adversarial networks. Commun ACM 63:139–144

    Article  Google Scholar 

  56. Nasir V, Sassani F (2021) A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges. Int J Adv Manuf Technol 115:2683–2709

    Article  Google Scholar 

  57. Dargan S, Kumar M, Ayyagari MR, Kumar G (2020) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Comput Methods Eng 27:1071–1092

    Article  MathSciNet  Google Scholar 

  58. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, New York

    Book  Google Scholar 

  59. Liu GR, Quek SS (2013) The finite element method: a practical course. Butterworth-Heinemann, Oxford

    Google Scholar 

  60. Sprave J, Drescher C (2021) Evaluating the quality of finite element meshes with machine learning. arXiv:2107.10507

  61. Zhang Z, Wang Y, Jimack PK, Wang H (2020) MeshingNet: a new mesh generation method based on deep learning. In: International conference on computational science. Springer, Berlin, pp 186–198

  62. Chan CL, Scholz F, Takacs T (2022) Locally refined quad meshing for linear elasticity problems based on convolutional neural networks. Eng Comput 38:4631–4652

    Article  Google Scholar 

  63. Guo Y et al (2022) A new mesh smoothing method based on a neural network. Comput Mech 69:425–438

    Article  MathSciNet  Google Scholar 

  64. Bohn J, Feischl M (2021) Recurrent neural networks as optimal mesh refinement strategies. Comput Math Appl 97:61–76

    MathSciNet  Google Scholar 

  65. Abueidda DW, Lu Q, Koric S (2021) Meshless physics-informed deep learning method for three-dimensional solid mechanics. Int J Numer Methods Eng 122:7182–7201

    Article  MathSciNet  Google Scholar 

  66. Aggarwal R, Ugail H, Jha R (2022) A deep artificial neural network architecture for mesh free solutions of nonlinear boundary value problems. Appl Intell 52:916–926

    Article  Google Scholar 

  67. Zhang L et al (2021) Hierarchical deep-learning neural networks: finite elements and beyond. Comput Mech 67:207–230

    Article  MathSciNet  Google Scholar 

  68. Liu Y et al (2023) HiDeNN-FEM: a seamless machine learning approach to nonlinear finite element analysis. Comput Mech 72:173–194

    Article  MathSciNet  PubMed  Google Scholar 

  69. Oishi A, Yagawa G (2017) Computational mechanics enhanced by deep learning. Comput Methods Appl Mech Eng 327:327–351

    Article  ADS  MathSciNet  Google Scholar 

  70. Cheng R, Xiaomeng Y, Chen L (2022) Machine learning enhanced boundary element method: prediction of Gaussian quadrature points. CMES-Comput Model Eng Sci 131:445–464

    Google Scholar 

  71. Vithalbhai SK, Nath D, Agrawal V, Gautam SS (2022) Artificial neural network assisted numerical quadrature in finite element analysis in mechanics. Mater Today: Proc 66:1645–1650

    Google Scholar 

  72. Zhou W, Yang X, Chen Y (2023) Adaptive sinh transformation Gaussian quadrature for 2D potential problems using deep learning. Eng Anal with Bound Elem 155:197–211

    Article  MathSciNet  Google Scholar 

  73. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101

    Article  ADS  MathSciNet  Google Scholar 

  74. Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641

    Article  ADS  MathSciNet  Google Scholar 

  75. Korzeniowski TF, Weinberg K (2021) A multi-level method for data-driven finite element computations. Comput Methods Appl Mech Eng 379:113740

    Article  ADS  MathSciNet  Google Scholar 

  76. Böhringer P et al (2023) A strategy to train machine learning material models for finite element simulations on data acquirable from physical experiments. Comput Methods Appl Mech Eng 406:115894

    Article  ADS  MathSciNet  Google Scholar 

  77. Kim S, Shin H (2023) Deep learning framework for multiscale finite element analysis based on data-driven mechanics and data augmentation. Comput Methods Appl Mech Eng 414:116131

    Article  ADS  MathSciNet  Google Scholar 

  78. Stoffel M, Bamer F, Markert B (2018) Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Struct 131:102–106

    Article  Google Scholar 

  79. Gorji MB, Mohr D (2019) Towards neural network models for describing the large deformation behavior of sheet metal. IOP Conf Ser: Mater Sci Eng 651:012102

    Article  CAS  Google Scholar 

  80. Palau T et al (2012) A neural network based elasto-plasticity material model. In: 6th European congress on computational methods in applied sciences and engineering. TU Wien, Wien, Austria

  81. Jang DP, Fazily P, Yoon JW (2021) Machine learning-based constitutive model for J2-plasticity. Int J Plast 138:102919

    Article  Google Scholar 

  82. Liu Z, Wu CT, Koishi M (2019) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput Methods Appl Mech Eng 345:1138–1168

    Article  ADS  MathSciNet  Google Scholar 

  83. Teranishi M (2022) Neural network constitutive model for uniaxial cyclic plasticity based on return mapping algorithm. Mech Res Commun 119:103815

    Article  Google Scholar 

  84. Carneiro AMC, Alves AFC, Coelho RPC, Cardoso JS, Pires FMA (2023) A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains. Finite Elem Anal Des 222:103956

    Article  MathSciNet  Google Scholar 

  85. Lubbers N, Lookman T, Barros K (2017) Inferring low-dimensional microstructure representations using convolutional neural networks. Phys Rev E 96:052111

    Article  ADS  PubMed  Google Scholar 

  86. Zhang P, Yin ZY (2021) A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM. Comput Methods Appl Mech Eng 382:113858

    Article  ADS  MathSciNet  Google Scholar 

  87. Li LF, Chen CQ (2022) Equilibrium-based convolution neural networks for constitutive modeling of hyperelastic materials. J Mech Phys Solids 164:104931

    Article  Google Scholar 

  88. Zhang Z, Gu GX (2020) Finite-element-based deep-learning model for deformation behavior of digital materials. Adv Theory Simul 3:2000031

    Article  ADS  CAS  Google Scholar 

  89. Vlassis NN, Ma R, Sun W (2020) Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity. Comput Methods Appl Mech Eng 371:113299

    Article  ADS  MathSciNet  Google Scholar 

  90. Wang Y, Sang J, Ao R, Ma Y, Fu B (2020) Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput Methods Biomech Biomed Eng 23:1190–1200

    Article  Google Scholar 

  91. Hamim A et al (2020) Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data. Constr Build Mater 257:119549

    Article  Google Scholar 

  92. Park S, Marimuthu KP, Han G, Lee H (2023) Deep learning based nanoindentation method for evaluating mechanical properties of polymers. Int J Mech Sci 246:108162

    Article  Google Scholar 

  93. Ossandón S, Barrientos M (2023) Neural network control design for solid composite materials. J Comput Sci 72:102081

    Article  Google Scholar 

  94. Ballit A, Dao T (2022) Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle. Med Biol Eng Comput 60:1177–1185

    Article  PubMed  Google Scholar 

  95. Huang DZ, Xu K, Farhat C, Darve E (2020) Learning constitutive relations from indirect observations using deep neural networks. J Comput Phys 416:109491

    Article  MathSciNet  Google Scholar 

  96. Tao F, Liu X, Du H, Yu W (2022) Finite element coupled positive definite deep neural networks mechanics system for constitutive modeling of composites. Comput Methods Appl Mech Eng 391:114548

    Article  ADS  MathSciNet  Google Scholar 

  97. Liu X, Tao F, Yu W (2020) A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data. Compos Struct 252:112658

    Article  Google Scholar 

  98. Liu X, Tao F, Du H, Yu W, Xu K (2020) Learning nonlinear constitutive laws using neural network models based on indirectly measurable data. J Appl Mech 87:081003

    Article  Google Scholar 

  99. Tao F, Liu X, Du H, Yu W (2021) Learning composite constitutive laws via coupling Abaqus and deep neural network. Compos Struct 272:114137

    Article  Google Scholar 

  100. Huang D, Fuhg JN, Weißenfels C, Wriggers P (2020) A machine learning based plasticity model using proper orthogonal decomposition. Comput Methods Appl Mech Eng 365:113008

    Article  ADS  MathSciNet  Google Scholar 

  101. Liu X, Tian S, Tao F, Yu W (2021) A review of artificial neural networks in the constitutive modeling of composite materials. Compos Part B: Eng 224:109152

    Article  Google Scholar 

  102. Lourenço R, Andrade-Campos A, Georgieva P (2022) The use of machine-learning techniques in material constitutive modelling for metal forming processes. Metals 12:427

    Article  Google Scholar 

  103. Flaschel M, Kumar S, De Lorenzis L (2021) Unsupervised discovery of interpretable hyperelastic constitutive laws. Comput Methods Appl Mech Eng 381:113852

    Article  ADS  MathSciNet  Google Scholar 

  104. Flaschel M, Kumar S, De Lorenzis L (2022) Discovering plasticity models without stress data. NPJ Comput Mater 8:1–10

    Article  Google Scholar 

  105. Thakolkaran P et al (2022) NN-EUCLID: Deep-learning hyperelasticity without stress data. J Mech Phys Solids 169:105076

    Article  MathSciNet  Google Scholar 

  106. Flaschel M, Kumar S, De Lorenzis L (2023) Automated discovery of generalized standard material models with EUCLID. Comput Methods Appl Mech Eng 405:115867

    Article  ADS  MathSciNet  Google Scholar 

  107. Chen Q et al (2021) A deep neural network inverse solution to recover pre-crash impact data of car collisions. Transp Res Part C: Emerg Technol 126:103009

    Article  Google Scholar 

  108. Chen G (2021) Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity. Comput Mech 67:1009–1019

    Article  MathSciNet  Google Scholar 

  109. As’ad F, Avery P, Farhat C (2022) A mechanics-informed artificial neural network approach in data-driven constitutive modeling. Int J Numer Methods Eng 123:2738–2759

    Article  MathSciNet  Google Scholar 

  110. Jung J, Yoon K, Lee PS (2020) Deep learned finite elements. Comput Methods Appl Mech Eng 372:113401

    Article  ADS  MathSciNet  Google Scholar 

  111. Jung J, Jun H, Lee PS (2022) Self-updated four-node finite element using deep learning. Comput Mech 69:23–44

    Article  MathSciNet  Google Scholar 

  112. Han X, Sun X, Chen X (2023) Locally assembled stiffness matrix: a novel method to obtain global stiffness matrix. Acta Mech 234:2461–2480

    Article  Google Scholar 

  113. Tandale SB, Markert B, Stoffel M (2022) Smart stiffness computation of one-dimensional finite elements. Mech Res Commun 119:103817

    Article  Google Scholar 

  114. Tandale SB, Markert B, Stoffel M (2022) Intelligent stiffness computation for plate and beam structures by neural network enhanced finite element analysis. Int J Numer Methods Eng 123:4001–4031

    Article  MathSciNet  Google Scholar 

  115. Mai HT, Kang J, Lee J (2021) A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior. Finite Elem Anal Des 196:103572

    Article  MathSciNet  Google Scholar 

  116. Capuano G, Rimoli JJ (2019) Smart finite elements: a novel machine learning application. Comput Methods Appl Mech Eng 345:363–381

    Article  ADS  MathSciNet  Google Scholar 

  117. Wriggers P, Laursen TA (2006) Computational contact mechanics. Springer, Berlin

    Book  Google Scholar 

  118. Oishi A, Yoshimura S (2007) A new local contact search method using a multi-layer neural network. Comput Model Eng Sci 21:93

    MathSciNet  Google Scholar 

  119. Oishi A, Yagawa G (2020) A surface-to-surface contact search method enhanced by deep learning. Comput Mech 65:1125–1147

    Article  MathSciNet  Google Scholar 

  120. Kalliorinne K, Larsson R, Pérez-Ràfols F, Liwicki M, Almqvist A (2021) Artificial neural network architecture for prediction of contact mechanical response. Front Mech Eng 6:105

    Article  Google Scholar 

  121. Polat A (2023) Estimation of contact lengths using deep learning neural network. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13:458–470

    Google Scholar 

  122. Furlan M, Mavros G (2022) A neural network approach for roughness-dependent update of tyre friction. Simul Model Pract Theory 116:102484

    Article  Google Scholar 

  123. Hattori G, Serpa AL (2015) Contact stiffness estimation in ANSYS using simplified models and artificial neural networks. Finite Elem Anal Des 97:43–53

    Article  Google Scholar 

  124. Zhou JM, Dong L, Guan J, Yan W (2019) Impact load identification of nonlinear structures using deep recurrent neural network. Mech Syst Signal Process 133:106292

    Article  Google Scholar 

  125. Chen G et al (2019) Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures. Comput Mech 64:435–449

    Article  MathSciNet  Google Scholar 

  126. Bruski D, Pachocki L, Sciegaj A, Witkowski W (2023) Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning. Adv Eng Softw 184:103502

    Article  Google Scholar 

  127. Moon S et al (2021) Impact parameter prediction of a simulated metallic loose part using convolutional neural network. Nucl Eng Technol 53:1199–1209

    Article  CAS  Google Scholar 

  128. Zhao J et al (2023) Compression after multiple impact strength of composite laminates prediction method based on machine learning approach. Aerosp Sci Technol 136:108243

    Article  Google Scholar 

  129. Carlucci DE, Jacobson SS (2018) Ballistics: theory and design of guns and ammunition. CRC Press, Boca Raton

    Book  Google Scholar 

  130. KılıÇ N, Ekici B, Hartomacıoğlu S (2015) Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools. Def Technol 11:110–122

    Article  Google Scholar 

  131. Bortolan Neto L et al (2020) Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings. Int J Impact Eng 137:103461

    Article  Google Scholar 

  132. Bobbili R, Ramakrishna B, Madhu V (2020) An artificial intelligence model for ballistic performance of thin plates. Mech Based Des Struct Mach 51:327–338

    Article  Google Scholar 

  133. Dennis AA, Pannell JJ, Smyl DJ, Rigby SE (2021) Prediction of blast loading in an internal environment using artificial neural networks. Int J Protect Struct 12:287–314

    Article  Google Scholar 

  134. Becker M, Klavzar A, Wolf T, Renck M (2022) Data-driven prediction of plate velocities and plate deformation of explosive reactive armor. Def Technol 18:2141–2149

    Article  Google Scholar 

  135. Ramuhalli P, Udpa L, Udpa SS (2005) Finite-element neural networks for solving differential equations. IEEE Trans Neural Netw 16:1381–1392

    Article  PubMed  Google Scholar 

  136. Santo ND, Deparis S, Pegolotti L (2020) Data driven approximation of parametrized pdes by reduced basis and neural networks. J Comput Phys 416:109550

    Article  MathSciNet  Google Scholar 

  137. Kalogeris I, Papadopoulos V (2021) Diffusion maps-aided neural networks for the solution of parametrized pdes. Comput Methods Appl Mech Eng 376:113568

    Article  ADS  MathSciNet  Google Scholar 

  138. Shin YH, Baek SJ (2021) Hopfield-type neural ordinary differential equation for robust machine learning. Pattern Recogn Lett 152:180–187

    Article  ADS  Google Scholar 

  139. Salvador M, Dede L, Manzoni A (2021) Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks. Comput Math Appl 104:1–13

    MathSciNet  Google Scholar 

  140. Mücke NT, Bohté SM, Oosterlee CW (2021) Reduced order modeling for parameterized time-dependent PDEs using spatially and memory aware deep learning. J Comput Sci 53:101408

    Article  Google Scholar 

  141. Gu Y, Yang H, Zhou C (2021) Selectnet: self-paced learning for high-dimensional partial differential equations. J Comput Phys 441:110444

    Article  MathSciNet  Google Scholar 

  142. Li Y, Zhou Z, Ying S (2022) DeLISA: deep learning based iteration scheme approximation for solving PDEs. J Comput Phys 451:110884

    Article  MathSciNet  Google Scholar 

  143. Qu J, Cai W, Zhao Y (2022) Learning time-dependent PDEs with a linear and nonlinear separate convolutional neural network. J Comput Phys 453:110928

    Article  MathSciNet  Google Scholar 

  144. Nikolopoulos S, Kalogeris I, Papadopoulos V (2022) Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders. Eng Appl Artif Intell 109:104652

    Article  Google Scholar 

  145. Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364

    Article  ADS  MathSciNet  Google Scholar 

  146. Yu B (2018) The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun Math Stat 6:1–12

    Article  ADS  MathSciNet  Google Scholar 

  147. Samaniego E et al (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790

    Article  ADS  MathSciNet  Google Scholar 

  148. Cai Z, Chen J, Liu M, Liu X (2020) Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs. J Comput Phys 420:109707

    Article  MathSciNet  Google Scholar 

  149. Arora R, Basu A, Mianjy P, Mukherjee A (2016) Understanding deep neural networks with rectified linear units. arXiv:1611.01491

  150. He J, Li L, Xu J, Zheng C (2018) ReLU deep neural networks and linear finite elements. arXiv:1807.03973

  151. Opschoor JAA, Petersen PC, Schwab C (2020) Deep ReLU networks and high-order finite element methods. Anal Appl 18:715–770

    Article  MathSciNet  Google Scholar 

  152. Liu M, Cai Z, Chen J (2022) Adaptive two-layer ReLU neural network: I. Best least-squares approximation. Comput Math Appl 113:34–44

    MathSciNet  Google Scholar 

  153. Liu M, Cai Z (2022) Adaptive two-layer ReLU neural network: II. Ritz approximation to elliptic pdes. Comput Math Appl 113:103–116

    MathSciNet  Google Scholar 

  154. Choi J, Kim N, Hong Y (2023) Unsupervised Legendre-Galerkin neural network for solving partial differential equations. IEEE Access 11:23433–23446

    Article  Google Scholar 

  155. Aristotelous AC, Mitchell EC, Maroulas V (2023) ADLGM: an efficient adaptive sampling deep learning Galerkin method. J Comput Phys 477:111944

    Article  MathSciNet  Google Scholar 

  156. Baharlouei S, Mokhtari R, Mostajeran F (2023) DNN-HDG: a deep learning hybridized discontinuous Galerkin method for solving some elliptic problems. Eng Anal Bound Elem 151:656–669

    Article  MathSciNet  Google Scholar 

  157. Raissi M (2018) Deep hidden physics models: deep learning of nonlinear partial differential equations. J Mach Learn Res 19:932–955

    MathSciNet  Google Scholar 

  158. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  ADS  MathSciNet  Google Scholar 

  159. Guo J, Yao Y, Wang H, Gu T (2023) Pre-training strategy for solving evolution equations based on physics-informed neural networks. J Comput Phys 489:112258

    Article  MathSciNet  Google Scholar 

  160. Wang J, Mo YL, Izzuddin B, Kim CW (2023) Exact Dirichlet boundary physics-informed neural network EPINN for solid mechanics. Comput Methods Appl Mech Eng 414:116184

    Article  ADS  MathSciNet  Google Scholar 

  161. Abueidda DW et al (2022) A deep learning energy method for hyperelasticity and viscoelasticity. Eur J Mech-A/Solids 95:104639

    Article  MathSciNet  Google Scholar 

  162. Bezgin DA, Schmidt SJ, Adams NA (2021) A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks. J Comput Phys 437:110324

    Article  MathSciNet  Google Scholar 

  163. Motlagh YG, Jimack PK, de Borst R (2023) Deep learning phase-field model for brittle fractures. Int J Numer Methods Eng 124:620–638

    Article  MathSciNet  Google Scholar 

  164. Arora R, Kakkar P, Dey B, Chakraborty A (2022) Physics-informed neural networks for modeling rate-and temperature-dependent plasticity. arXiv:2201.08363

  165. Roy AM, Bose R, Sundararaghavan V, Arróyave R (2023) Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity. Neural Netw 162:472–489

    Article  PubMed  Google Scholar 

  166. Rocha IB, Kerfriden P, van der Meer FP (2023) Machine learning of evolving physics-based material models for multiscale solid mechanics. Mech Mater 184:104707

    Article  Google Scholar 

  167. Miele S, Karve P, Mahadevan S (2023) Multi-fidelity physics-informed machine learning for probabilistic damage diagnosis. Reliab Eng Syst Saf 235:109243

    Article  Google Scholar 

  168. Grossmann TG, Komorowska UJ, Latz J, Schönlieb CB (2023) Can physics-informed neural networks beat the finite element method? arXiv preprint arXiv:2302.04107

  169. Dwivedi V, Srinivasan B (2020) Physics informed extreme learning machine (PIELM)-a rapid method for the numerical solution of partial differential equations. Neurocomputing 391:96–118

    Article  Google Scholar 

  170. Ambrosio JAC (2001) Crashworthiness: energy management and occupant protection. In: CISM international centre for mechanical sciences series, vol 423. Springer, Vienna

  171. Yadav S, Pradhan SK (2014) Investigations into dynamic response of automobile components during crash simulation. Procedia Eng 97:1254–1264

    Article  Google Scholar 

  172. Omar T, Eskandarian A, Bedewi N (1998) Vehicle crash modelling using recurrent neural networks. Math Comput Model 28:31–42

    Article  Google Scholar 

  173. Bohn B et al (2013) Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Comput Sci 18:621–630

    Article  Google Scholar 

  174. Yang C et al (2023) Transfer learning-based crashworthiness prediction for the composite structure of a subway vehicle. Int J Mech Sci 248:108244

    Article  Google Scholar 

  175. Kohar CP, Greve L, Eller TK, Connolly DS, Inal K (2021) A machine learning framework for accelerating the design process using CAE simulations: an application to finite element analysis in structural crashworthiness. Comput Methods Appl Mech Eng 385:114008

    Article  ADS  MathSciNet  Google Scholar 

  176. Sakaridis E, Karathanasopoulos N, Mohr D (2022) Machine-learning based prediction of crash response of tubular structures. Int J Impact Eng 166:104240

    Article  Google Scholar 

  177. Feng N, Zhang G, Khandelwal K (2022) Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Comput Struct 263:106742

    Article  Google Scholar 

  178. Martínez-Martínez F et al (2017) A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Comput Biol Med 90:116–124

    Article  PubMed  Google Scholar 

  179. Liang R, Yip J, Yu W, Chen L, Lau N (2021) Finite element-based machine learning method to predict breast displacement during running. AATCC J Res 8:69–74

    Article  Google Scholar 

  180. Ghavamian F, Simone A (2019) Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput Methods Appl Mech Eng 357:112594

    Article  ADS  MathSciNet  Google Scholar 

  181. Jokar M, Semperlotti F (2021) Finite element network analysis: a machine learning based computational framework for the simulation of physical systems. Comput Struct 247:106484

    Article  Google Scholar 

  182. Le-Duc T, Nguyen-Xuan H, Lee J (2023) A finite-element-informed neural network for parametric simulation in structural mechanics. Finite Elem Anal Des 217:103904

    Article  MathSciNet  Google Scholar 

  183. Hashemi A, Jang J, Beheshti J (2023) A machine learning-based surrogate finite element model for estimating dynamic response of mechanical systems. IEEE Access 11:54509–54525

    Article  Google Scholar 

  184. Bickel S, Goetz S, Wartzack S (2023) Detection of plausibility and error reasons in finite element simulations with deep learning networks. Algorithms 16:209

    Article  Google Scholar 

  185. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Book  Google Scholar 

  186. Dixit PM, Dixit US (2014) Plasticity: fundamentals and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  187. Burgos DAT, Vargas RCG, Pedraza C, Agis D, Pozo F (2020) Damage identification in structural health monitoring: a brief review from its implementation to the use of data-driven applications. Sensors 20:733

    Article  ADS  PubMed  Google Scholar 

  188. Pagani A, Enea M, Carrera E (2021) Component-wise damage detection by neural networks and refined FEs training. J Sound Vib 509:116255

    Article  Google Scholar 

  189. Seventekidis P, Giagopoulos D (2021) A combined finite element and hierarchical deep learning approach for structural health monitoring: Test on a pin-joint composite truss structure. Mech Syst Signal Process 157:107735

    Article  Google Scholar 

  190. Fernandez-Navamuel A et al (2022) Supervised deep learning with finite element simulations for damage identification in bridges. Eng Struct 257:114016

    Article  Google Scholar 

  191. Ho LV et al (2021) A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks. Comput Struct 252:106568

    Article  Google Scholar 

  192. Zobeiry N, Reiner J, Vaziri R (2020) Theory-guided machine learning for damage characterization of composites. Compos Struct 246:112407

    Article  Google Scholar 

  193. Reiner J, Vaziri R, Zobeiry N (2021) Machine learning assisted characterisation and simulation of compressive damage in composite laminates. Compos Struct 273:114290

    Article  CAS  Google Scholar 

  194. Torzoni M, Manzoni A, Mariani S (2023) A multi-fidelity surrogate model for structural health monitoring exploiting model order reduction and artificial neural networks. Mech Syst Signal Process 197:110376

    Article  Google Scholar 

  195. Yang H, Zou C, Huang M, Zang M, Chen S (2023) High-fidelity computational modeling of scratch damage in automotive coatings with machine learning-driven identification of fracture parameters. Compos Struct 316:117027

    Article  Google Scholar 

  196. Paermentier B, Debruyne D, Talemi R (2021) A machine learning based sensitivity analysis of the GTN damage parameters for dynamic fracture propagation in X70 pipeline steel. Int J Fract 227:111–132

    Article  Google Scholar 

  197. Atta M, Abd-Elhady AA, Abu-Sinna A, Sallam HEM (2019) Prediction of failure stages for double lap joints using finite element analysis and artificial neural networks. Eng Fail Anal 97:242–257

    Article  Google Scholar 

  198. Balcıoğlu HE, Seçkin AÇ (2021) Comparison of machine learning methods and finite element analysis on the fracture behavior of polymer composites. Arch Appl Mech 91:223–239

    Article  Google Scholar 

  199. van de Weg BP, Greve L, Andres M, Eller TK, Rosic B (2021) Neural network-based surrogate model for a bifurcating structural fracture response. Eng Fract Mech 241:107424

    Article  Google Scholar 

  200. Sun X, Liu Z, Wang X, Chen X (2022) Determination of ductile fracture properties of 16MND5 steels under varying constraint levels using machine learning methods. Int J Mech Sci 224:107331

    Article  Google Scholar 

  201. Silva GC, Beber VC, Pitz DB (2021) Machine learning and finite element analysis: an integrated approach for fatigue lifetime prediction of adhesively bonded joints. Fatigue Fract Eng Mater Struct 44:3334–3348

    Article  Google Scholar 

  202. Thakre S, Kanjarla AK (2022) Reduced-order damage assessment model for dual-phase steels. Integr Mater Manuf Innov 11:587–606

    Article  Google Scholar 

  203. Gorji MB, de Pannemaecker A, Spevack S (2022) Machine learning predicts fretting and fatigue key mechanical properties. Int J Mech Sci 215:106949

    Article  Google Scholar 

  204. DeMille KJ, Spear AD (2022) Convolutional neural networks for expediting the determination of minimum volume requirements for studies of microstructurally small cracks, Part I: model implementation and predictions. Comput Mater Sci 207:111290

    Article  Google Scholar 

  205. Demille KJ, Spear AD (2023) Convolutional neural networks for expediting the determination of minimum volume requirements for studies of microstructurally small cracks, part II: model interpretation. Comput Mater Sci 227:112261

    Article  Google Scholar 

  206. Han S, Khatir S, Wahab MA (2023) A deep learning approach to predict fretting fatigue crack initiation location. Tribol Int 185:108528

    Article  Google Scholar 

  207. Perera R, Agrawal V (2023) A generalized machine learning framework for brittle crack problems using transfer learning and graph neural networks. Mech Mater 181:104639

    Article  Google Scholar 

  208. Quqa S, Li S, Shu Y, Landi L, Loh KJ (2023) Crack identification using smart paint and machine learning. Struct Health Monit 3 (In press)

  209. Yang E et al (2021) Research on the recurrent neural network-based fatigue damage model of asphalt binder and the finite element analysis development. Constr Build Mater 267:121761

    Article  CAS  Google Scholar 

  210. He L, Wang Z, Akebono H, Sugeta A (2021) Machine learning-based predictions of fatigue life and fatigue limit for steels. J Mater Sci Technol 90:9–19

    Article  Google Scholar 

  211. Hu L, Feng P, Meng Y, Yang J (2021) Buckling behavior analysis of prestressed CFRP-reinforced steel columns via FEM and ANN. Eng Struct 245:112853

    Article  Google Scholar 

  212. Mohammed AI, Bartlett M, Oyeneyin B, Kayvantash K, Njuguna J (2021) An application of FEA and machine learning for the prediction and optimisation of casing buckling and deformation responses in shale gas wells in an in-situ operation. J Nat Gas Sci Eng 95:104221

    Article  Google Scholar 

  213. Kumar R, Kumar A, Ranjan D (2023) Buckling response of CNT based hybrid FG plates using finite element method and machine learning method. Compos Struct 319:117204

    Article  CAS  Google Scholar 

  214. Xin R, Le VT, Goo NS (2023) Prediction of the buckling mode of cylindrical composite shells with imperfections using FEM- based deep learning approach. Adv Compos Mater (In press)

  215. Zarringol M, Ishvarbhai V, Quan Q (2023) Artificial neural network model for strength predictions of CFST columns strengthened with CFRP. Eng Struct 281:115784

    Article  Google Scholar 

  216. Chen J, Wan L, Ismail Y, Ye J, Yang D (2021) A micromechanics and machine learning coupled approach for failure prediction of unidirectional CFRP composites under triaxial loading: A preliminary study. Compos Struct 267:113876

    Article  CAS  Google Scholar 

  217. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Mech Eng 101:207–224

    Article  ADS  MathSciNet  Google Scholar 

  218. Khoei AR, Moslemi H, Seddighian MR (2020) An efficient stress recovery technique in adaptive finite element method using artificial neural network. Eng Fract Mech 237:107231

    Article  Google Scholar 

  219. Saikia BB, Nath D, Gautam SS (2023) Application of machine learning in efficient stress recovery in finite element analysis. Mater Today: Proc 78:359–363

    Google Scholar 

  220. Oishi A, Yagawa G (2021) Finite elements using neural networks and a posteriori error. Arch Comput Methods Eng 28:3433–3456

    Article  Google Scholar 

  221. Liang L, Liu M, Martin C, Sun W (2018) A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J R Soc Interface 15:20170844

    Article  PubMed  PubMed Central  Google Scholar 

  222. Madani A, Bakhaty A, Kim J, Mubarak Y, Mofrad MRK (2019) Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis. J Biomech Eng 141:084502

    Article  PubMed  Google Scholar 

  223. Bolandi H, Li X, Salem T, Boddeti VN, Lajnef N (2022) Bridging finite element and deep learning: high-resolution stress distribution prediction in structural components. Front Struct Civ Eng 16:1365–1377

    Article  Google Scholar 

  224. Yang C, Kim Y, Ryu S, Gu GX (2020) Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater Des 189:108509

    Article  Google Scholar 

  225. Yang Z, Yu CH, Buehler MJ (2021) Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci Adv 7:eabd7416

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  226. Yang Z, Yu CH, Guo K, Buehler MJ (2021) End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures. J Mech Phys Solids 154:104506

    Article  MathSciNet  Google Scholar 

  227. Bhaduri A, Gupta A, Graham-Brady L (2022) Stress field prediction in fiber-reinforced composite materials using a deep learning approach. Compos Part B: Eng 238:109879

    Article  CAS  Google Scholar 

  228. Shokrollahi Y, Nikahd MM, Gholami K, Azamirad G (2023) Deep learning techniques for predicting stress fields in composite materials: a superior alternative to finite element analysis. J Compos Sci 7:311

    Article  Google Scholar 

  229. Nashed MS, Renno J, Mohamed MS (2023) Nonlinear analysis of shell structures using image processing and machine learning. Adv Eng Softw 176:103392

    Article  Google Scholar 

  230. Urbas U, Zorko D, Vukašinović N (2021) Machine learning based nominal root stress calculation model for gears with a progressive curved path of contact. Mech Mach Theory 165:104430

    Article  Google Scholar 

  231. Liu X, Al-Qadi IL (2021) Three-dimensional tire-pavement contact stresses prediction by deep learning approach. Int J Pavement Eng 23:4991–5002

    Article  Google Scholar 

  232. Wu Y, Zhang L, Liu H, Lu P (2022) Stress prediction of bridges using ANSYS soft and general regression neural network. Structures 40:812–823

    Article  Google Scholar 

  233. Hajializadeh F, Ince A (2021) Integration of artificial neural network with finite element analysis for residual stress prediction of direct metal deposition process. Mater Today Commun 27:102197

    Article  CAS  Google Scholar 

  234. Ozkan MT, Erdemir F (2021) Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques. Neural Comput Appl 33:12641–12659

    Article  Google Scholar 

  235. Belding M, Enshaeian A, Rizzo P (2022) A machine learning-based approach to determining stress in rails. Struct Health Monitor 22:639–656

    Article  Google Scholar 

  236. Nie Z, Jiang H, Kara LB (2020) Stress field prediction in cantilevered structures using convolutional neural networks. J Comput Inf Sci Eng 20:011002

    Article  Google Scholar 

  237. Jiang H, Nie Z, Yeo R, Farimani AB, Kara LB (2021) StressGAN: a generative deep learning model for two-dimensional stress distribution prediction. J Appl Mech 88:051005

    Article  Google Scholar 

  238. Xu H et al (2023) SuperMeshing: Boosting the mesh density of stress field in plane-strain problems using deep learning method. J Comput Inf Sci Eng 23:034501

    Article  Google Scholar 

  239. Gokhale NS (2008) Practical finite element analysis, finite to infinite

  240. D Bäker M (2018) How to get meaningful and correct results from your finite element model. arXiv preprint arXiv:1811.05753

  241. Kim NH (2014) Introduction to nonlinear finite element analysis. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from SERB, DST under the projects IMP/2019/000276, CRG/2022/002218 and VSSC, ISRO through MoU No.: ISRO:2020:MOU: NO:480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Singh Gautam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Ankit, Neog, D.R. et al. Application of Machine Learning and Deep Learning in Finite Element Analysis: A Comprehensive Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10063-0

Keywords

Navigation