Skip to main content
Log in

Artificial Neural Network (ANN)-Based Residual Strength Prediction of Carbon Fibre Reinforced Composites (CFRCs) After Impact

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This study presents an artificial neural network (ANN) model for predicting the residual strength of carbon fibre reinforced composites (CFRCs) after low-velocity impact. First, a finite element (FE) model was developed addressing intra-laminar damage and inter-laminar delamination, to estimate low-velocity impact (LVI) and compression-after-impact (CAI) responses of CFRCs. The FE results in terms of load–displacement curves, damage patterns, and residual strengths were found to be essentially in agreement with those by experiments. An ANN model was developed using back-propagation learning algorithm and was trained using the FE results to establish a nonlinear relationship between LVI parameters (i.e. impact energy and impactor diameter) and CFRC residual strength. Twelve sets of additional CAI simulations were carried out to validate the proposed ANN-based residual strength prediction model. A good agreement was achieved between the residual strengths predicted by ANN model and the FE results with errors less than 5%, demonstrating the effectiveness of the present ANN model. The established ANN-based model can effectively reduce the experimental costs and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shi, Y., Swait, T., Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 94(9), 2902–2913 (2012)

    Article  Google Scholar 

  2. Prentzias, V., Tsamasphyros, G.: Simulation of low velocity impact on CFRP aerospace structures: simplified approaches, numerical and experimental results. Appl. Compos. Mater. 26(3), 835–856 (2019)

    Article  CAS  Google Scholar 

  3. Wu, Z.Y., Ying, Z.P., Hu, X.D., et al.: Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Compos. B Eng. 196, 108098 (2020)

    Article  CAS  Google Scholar 

  4. Qiu, A., Fu, K., Lin, W., et al.: Modelling low-speed drop-weight impact on composite laminates. Mater. Des. 60, 520–531 (2014)

    Article  Google Scholar 

  5. Davies, G.A.O., Olsson, R.: Impact on composite structures. Aeronaut. J. 108(1089), 541–563 (2004)

    Article  Google Scholar 

  6. Chen, Y., Hou, S., Fu, K., et al.: Low-velocity impact response of composite sandwich structures: modelling and experiment. Compos. Struct. 168, 322–334 (2017)

    Article  Google Scholar 

  7. Schwab, M., Todt, M., Wolfahrt, M., et al.: Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements. Compos. Sci. Technol. 128, 131–137 (2016)

    Article  CAS  Google Scholar 

  8. Thorsson, S.I., Waas, A.M., Rassaian, M., et al.: Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach part A: Impact study. Int. J. Solids Struct. 185–200 (2018)

  9. Cheng, Z., Xiong, J.: Progressive damage behaviors of woven composite laminates subjected to LVI, TAI and CAI. Chinese J. Aeronaut. 33(10), 2807–2823 (2020)

  10. Patel, S., Vusa, V.R., Soares, C.G., et al.: Crashworthiness analysis of polymer composites under axial and oblique impact loading. Int. J. Mech. Sci. 156, 221–234 (2019)

  11. Lou, X., Cai, H., Yu, P., et al.: Failure analysis of composite laminate under low-velocity impact based on micromechanics of failure. Compos. Struct. 163, 238–247 (2017)

    Article  Google Scholar 

  12. Sun, X.C., Hallett, S.R.: Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos. A Appl. Sci. Manuf. 104, 41–59 (2018)

    Article  CAS  Google Scholar 

  13. Debski, H., Rozylo, P., Gliszczynski, A.: Effect of low-velocity impact damage location on the stability and post-critical state of composite columns under compression. Compos. Struct. 184, 883–893 (2018)

    Article  Google Scholar 

  14. Sun, W., Guan, Z., Ouyang, T., et al.: Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels. Compos. Struct. 184, 198–210 (2018)

    Article  Google Scholar 

  15. Liu, H.B,. Liu, J., Dear, J.P., et al.: Effects of impactor geometry on the low-velocity impact behaviour of fibre-reinforced composites: an experimental and theoretical investigation. Appl. Compos. Mater. 27, 533–553 (2020)

  16. Liu, D., Bai, R., Lei, Z., et al.: Experimental and numerical study on compression-after-impact behavior of composite panels with foam-filled hat-stiffener. Ocean Eng. 198(15), 106991 (2020)

    Article  Google Scholar 

  17. Aryal, B., Morozov, E.V., Shankar, K., et al.: Effects of ballistic impact damage on mechanical behaviour of composite honeycomb sandwich panels. J. Sandw. Struct. Mater. (2020)

  18. Moumen, A.E., Tarfaoui, M., Hassoon, O.H., et al.: Experimental study and numerical modelling of low velocity impact on laminated composite reinforced with thin film made of carbon nanotubes. Appl. Compos. Mater. 25(2), 309–320 (2018)

    Article  Google Scholar 

  19. Liu, H., Falzon, B.G., Tan, W.: Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Compos. A Appl. Sci. Manuf. 105, 189–202 (2018)

    Article  CAS  Google Scholar 

  20. Liu, H., Falzon, B.G., Tan, W.: Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Compos. B Eng. 136, 101–118 (2018)

    Article  CAS  Google Scholar 

  21. Caminero, M.A., García-Moreno, I., Rodríguez, G.P.: Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates. Polym. Testing 66, 360–370 (2018)

    Article  CAS  Google Scholar 

  22. González, E.V., Maimí, P., Camanho, P.P., et al.: Simulation of drop-weight impact and compression after impact tests on composite laminates. Compos. Struct. 94(11), 3364–3378 (2012)

    Article  Google Scholar 

  23. Rivallant, S., Bouvet, C., Hongkarnjanakul, N.: Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements. Compos. A Appl. Sci. Manuf. 55, 83–93 (2013)

    Article  CAS  Google Scholar 

  24. Habibi, M., Laperriere, L., Hassanabadi, H.M., et al.: Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite. Compos. Struct. 186, 175–182 (2018)

  25. Tuo, H., Lu, Z., Ma, X., et al.: An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates. Compos. B Eng. 167, 329–341 (2019)

    Article  CAS  Google Scholar 

  26. Zhang, Z., Friedrich, K.: Artificial neural networks applied to polymer composites: A review. Compos. Sci. Techonol. 63(14), 2029–2044 (2003)

    Article  CAS  Google Scholar 

  27. Fan, H., Wang, H.: Predicting the open-hole tensile strength of composite plates based on probabilistic neural network. Appl. Compos. Mater. 21(6), 827–840 (2014)

    Article  Google Scholar 

  28. Altabey, W.A., Noori, M.: Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures. International Journal of Sustainable Materials and Structural Systems 3(1), 53–78 (2017)

    Article  Google Scholar 

  29. Stamopoulos, A.G., Tserpes, K.I., Dentsoras, A.J.: Quality assessment of porous CFRP specimens using X-ray Computed Tomography data and Artificial Neural Networks. Compos. Struct. 192(10), 327–335 (2018)

  30. Balokas, G., Czichon, S., Rolfes, R., et al.: Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty. Compos. Struct. 183(1), 550–562 (2018)

    Article  Google Scholar 

  31. Vineela, M.G., Dave, A., Chaganti, P.K., et al.: Artificial neural network based prediction of tensile strength of hybrid composites. Materials Today: Proceedings 5(9), 19908–19915 (2018)

    Google Scholar 

  32. Chen, G., Wang, H., Bezold, A., et al.: Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network. Compos. Struct. 223(17), 110951 (2019)

    Article  Google Scholar 

  33. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  34. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7(4), 448–464 (1973)

    Article  Google Scholar 

  35. ASTM D7137/D7137M - 12 standard test method for compressive residual strength properties of damaged polymer matrix composite.

  36. ASTM D7136/D7136M-15 standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event.

  37. Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM, No. 211737 (2002)

  38. Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Compos. A Appl. Sci. Manuf. 41(6), 737–749 (2010)

    Article  Google Scholar 

  39. Jumahat, A., Soutis, C., Hodzic, A.: A graphical method predicting the compressive strength of toughened unidirectional composite laminates. Appl. Compos. Mater. 18(1), 65–83 (2011)

    Article  CAS  Google Scholar 

  40. Shahid, I., Chang, F.K.: An accumulative damage model for tensile and shear failures of laminated composite plates. J. Compos. Mater. 29(7), 926–981 (1995)

    Article  Google Scholar 

  41. Pinho, S.T., Robinson, P., Iannucci, L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  CAS  Google Scholar 

  42. Shi, Y., Soutis, C.: Modelling low velocity impact induced damage in composite laminates. Mech. Adv. Mater. Mod. Process. 3(1), 14 (2017)

    Article  Google Scholar 

  43. Schön, J.: Coefficient of friction of composite delamination surfaces. Wear 237(1), 77–89 (2000)

    Article  Google Scholar 

  44. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, NJ (1999)

    Google Scholar 

  45. Demuth, H., Beale, M.: Neural network toolbox for the use with Matlab. User’s guide, version 4 The MathWorks (2002)

  46. Hertz, J., Krogh, A., Palmer, R.G., et al.: Introduction to the theory of neural computation. Phys. Today 44, 70 (1991)

    Article  Google Scholar 

  47. Barzegar, R., Sattarpour, M., Nikudel, M.R., et al.: Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, case study: Azarshahr area, NW Iran. Model. Earth Syst. Environ. 2(2), 76 (2016)

    Article  Google Scholar 

  48. Ochiai, K., Usui S.: Improved kick out learning algorithm with delta-bar-delta-bar rule, IEEE International Conference on Neural Networks. 269–274 (1993)

  49. Sun, X.C., Hallett, S.R.: Barely visible impact damage in scaled composite laminates: experiments and numerical simulations. Int. J. Impact Eng. 109, 178–195 (2017)

    Article  Google Scholar 

  50. Ouyang, T., Bao, R., Sun, W., et al.: A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures. Thin-Walled Struct. 148, 106588 (2020)

    Article  Google Scholar 

  51. Pernas-Sánchez, J., Artero-Guerrero, J.A., Varas, D., et al.: Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates. Int. J. Impact Eng. 96, 1–10 (2016)

    Article  Google Scholar 

  52. Liu, P.F., Liao, B.B., Jia, L.Y., et al.: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Compos. Struct. 149, 408–422 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Shanghai Pujiang Program (grant number: 19PJ1410000), the National Science Fund for Distinguished Young Scholars (grant number: 11625210), the Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (grant number: SV2019-KF-04), the Fund of National Postdoctoral Program for Innovative Talents (BX20200244), and the fellowship of China Postdoctoral Science Foundation (2020M671224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunkun Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this study, a minimum of two LVI/CAI tests were repeated for each impact energy to ensure the reliability of test data. Figure 18 compares CAI test reproducibility of the CFRCs subjected to initial 33 J LVI. It is clear in the Fig. 18 that two CFRCs showed similar impact damage pattern, compressive load–displacement responses, and peak compressive loads at failure.

Fig. 18
figure 18

CAI test reproducibility of the CFRCs under 33 J impact

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Fu, K., Lee, J. et al. Artificial Neural Network (ANN)-Based Residual Strength Prediction of Carbon Fibre Reinforced Composites (CFRCs) After Impact. Appl Compos Mater 28, 809–833 (2021). https://doi.org/10.1007/s10443-021-09891-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09891-1

Keywords

Navigation