Skip to main content
Log in

Simulation of Low Velocity Impact on CFRP Aerospace Structures: Simplified Approaches, Numerical and Experimental Results

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper presents a study of low velocity impact on unidirectional composite specimens, a plate and an aerospace stiffened panel following the building block approach. Simplified approaches for a quick estimation of impact behavior description are used to define the impact dynamic response and the existence of delamination at coupon level, while numerical analysis models using ABAQUS/Explicit software and experimental results are described in detail and compared at all levels. Significant effort was made in the use of different types of elements and damage models for matrix cracking, fiber breakage and cohesive elements for delamination between plies of composite. The results obtained show that simplified approaches give an effective initial understanding of the impact response helping the interpretation of numerical and experimental results. In addition, the comparison of different methods of simulation demonstrated that continuum shell elements with induced cohesive elements present the most accurate results regarding the impact force, contact duration, energy absorption and damage extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bikakis, G.S.E.: Simulation of the dynamic response of GLARE plates subjected to low velocity impact using a linearized spring-mass model. Aerosp. Sci. Technol. 64, 24–30 (2017)

    Article  Google Scholar 

  2. Tsamasphyros, G.J., Bikakis, G.S.: Analytical modeling to predict the low velocity impact response of circular GLARE fiber–metal laminates. Aerosp. Sci. Technol. 29(1), 28–36 (2013)

    Article  Google Scholar 

  3. Giannopoulos, I.K., Theotokoglou, E.E., Zhang, X.: Impact damage and CAI strength of a woven CFRP material with fire retardant properties. Compos. Part B. 91(April), 8–17 (2016)

    Article  Google Scholar 

  4. Olsson, R.: Impact response of composite laminates – a guide to closed form solutions. FFA-TN 1992–33. The Aeronautical Research Institute of Sweden, Bromma (1993)

    Google Scholar 

  5. Abrate, S.: Modeling of impacts on composite structures. Compos. Struct. 51(2), 129–138 (2001)

    Article  Google Scholar 

  6. Shi, Y., Soutis, C.: A finite element analysis of impact damage in composite laminates. Aeronaut. J. 116(1186), 1331–1347 (2012)

    Article  Google Scholar 

  7. Shi, Y., Pinna, C., Soutis, C.: Modelling impact damage in composite laminates: a simulation of intra- and inter-laminar cracking. Compos. Struct. 114, 10–19 (2014)

    Article  Google Scholar 

  8. Shi, Y., Soutis, C.: Modelling low velocity impact induced damage in composite laminates. Mech. Adv. Mater. Mod. Process. 3, 14 (2017)

    Article  Google Scholar 

  9. Olsson, R.: Closed form prediction of peak load and delamination onset under small mass impact. Compos. Struct. 59(3), 341–349 (2003)

    Article  Google Scholar 

  10. Christoforou, A.P.: Impact dynamics and damage in composite structures. Compos. Struct. 52(2), 181–188 (2001)

    Article  Google Scholar 

  11. Abrate, S.: Impact on composite structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  12. Davies, G.A.O., Zhang, X., Zhou, G., Watson, S.: Numerical modelling of impact damage. Composites. 25(5), 342–350 (1994)

    Article  Google Scholar 

  13. Elder, D.J., Thomson, R.S., Nguyen, M.Q., Scott, M.L.: Review of delamination predictive methods for low speed impact of composite laminates. Compos. Struct. 66(1–4), 677–683 (2004)

    Article  Google Scholar 

  14. Olsson, R.: Mass criterion for wave controlled impact response of composite plates. Compos. A: Appl. Sci. Manuf. 31(8), 879–887 (2000)

    Article  Google Scholar 

  15. Gonzalez, E.V., Maimi, P., Camanho, P.P., Lopes, C.S., Blanco, N.: Effects of ply clustering in laminated composite plates under low-velocity impact loading. Compos. Sci. Technol. 71, 805–817 (2011)

    Article  Google Scholar 

  16. Olsson, R.: Analytical prediction of large mass impact damage in composite laminates. Compos. A: Appl. Sci. Manuf. 32(9), 1207–1215 (2001)

    Article  Google Scholar 

  17. Shivakumar, K.N., Elber, W., Illg, W.: Prediction of impact force and duration due to low velocity impact on circular composite laminates. J. Appl. Mech. 52(3), 674–680 (1985)

    Article  Google Scholar 

  18. Yigit, A.S., Christoforou, A.P.: Limits of asymptotic solutions in low-velocity impact of composite plates. Compos. Struct. 81(4), 568–574 (2007)

    Article  Google Scholar 

  19. Olsson, R., Donadon, M.V., Falzon, B.G.: Delamination threshold load for dynamic impact on plates. Int. J. Solids Struct. 43(10), 3124–3141 (2006)

    Article  Google Scholar 

  20. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. Taylor and Francis, Philadelphia (2007)

    Google Scholar 

  21. Christoforou, A.P., Yigit, A.S.: Effect of flexibility on low velocity impact response. J. Sound Vib. 217(3), 563–578 (1998)

    Article  Google Scholar 

  22. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  23. Abaqus v6.14 analysis user’s guide. Dassault Systèmes Simulia Corp., Providence (2014)

  24. ABAQUS/Explicit VUMAT for the simulation of damage and failure in unidirectional fiber composite materials, ABAQUS Answer 3123, Simulia (2011)

  25. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)

    Article  Google Scholar 

  26. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62(12–13), 1633–1662 (2001)

    Google Scholar 

  27. Perillo, G., Vedvik, N.P., Echtermeyer, A.T.: Numerical analysis of low velocity impacts on composite. Advanced modelling techniques. Proc. Simulia. Conf. (2012)

  28. Sharif-Khodaei, Z., Ghajari, M., Aliabadi, M.: Determination of impact location on composite stiffened panels. Smart Mater. Struct. 21(10): 105026 (2012)

    Article  Google Scholar 

  29. ASTM D7136/D7136M-05: Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. ASTM International, West Conshohocken, PA, USA (2005)

    Google Scholar 

  30. Tsampas Spyridon, Analysis of compression failure in multidirectional laminates, Phd Thesis, Imperial College (2013)

  31. Tserpes, K.I., Karachalios, V., Giannopoulos, I., Prentzias, V., Ruzek, R.: Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I: design, manufacturing and impact testing. Compos. Struct. 107: 726–736 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Prentzias.

Ethics declarations

Conflict of Interest

Non declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prentzias, V., Tsamasphyros, G.J. Simulation of Low Velocity Impact on CFRP Aerospace Structures: Simplified Approaches, Numerical and Experimental Results. Appl Compos Mater 26, 835–856 (2019). https://doi.org/10.1007/s10443-018-9752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9752-7

Keywords

Navigation