Skip to main content
Log in

Predicting the Open-Hole Tensile Strength of Composite Plates Based on Probabilistic Neural Network

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Tensile experiments were performed for open-hole composite plates with three different layups. With the limited number of experimental results, a probabilistic neural network (PNN) based approach is proposed to predict the tensile strength of composite plates with an open-hole. The predictive model takes the geometric parameters, the layup features and the average tensile stress of open-hole composite plates as the inputs and produces the safety status as the intermediate output with the classification function of PNN. Then the critical safety point, that is the open-hole tensile strength, where the safety status turns from survival to failure, is determined with the bi-section searching method. The predictions produce acceptable results whose errors are comparable to the coefficient of variation of experimental results. With experimental data from other studies, further assessments are also made to prove the capability of this model in predicting the open-hole tensile strength of composite plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Waddoups, M.E., Eisenmann, J., Kaminski, B.E.: Macroscopic fracture mechanics of advanced composite materials. J. Compos. Mater. 5(4), 446–454 (1971)

    Article  Google Scholar 

  2. Beaumont, P.: The failure of fibre composites: an overview. J. Strain Anal. Eng. 24(4), 189–205 (1989)

    Article  Google Scholar 

  3. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)

    Article  Google Scholar 

  4. Whitney, J., Nuismer, R.: Stress fracture criteria for laminated composites containing stress concentrations. J. Compos. Mater. 8(3), 253–265 (1974)

    Article  Google Scholar 

  5. Backlund, J., Aronsson, C.G.: Tensile fracture of laminates with holes. J. Compos. Mater. 20(3), 259–286 (1986)

    Article  Google Scholar 

  6. Tan, S.: Laminated composites containing an elliptical opening. I. Approximate stress analyses and fracture models. J. Compos. Mater. 21(10), 925–948 (1987)

    Article  Google Scholar 

  7. Nguyen, B.N.: Three-dimensional modeling of damage in laminated composites containing a central hole. J. Compos. Mater. 31(17), 1672–1693 (1997)

    Article  Google Scholar 

  8. Morais, A.B..: Open-hole tensile strength of quasi-isotropic laminates. Compos. Sci. Technol. 60(10), 1997–2004 (2000)

    Article  Google Scholar 

  9. Maa, R.H., Cheng, J.H.: A CDM-based failure model for predicting strength of notched composite laminates. Compos. B Eng. 33(6), 479–489 (2002)

    Article  Google Scholar 

  10. Green, B., Wisnom, M., Hallett, S.: An experimental investigation into the tensile strength scaling of notched composites. Compos. A Appl. Sci. 38(3), 867–878 (2007)

    Article  Google Scholar 

  11. Ghezzo, F., Giannini, G., Cesari, F., Caligiana, G.: Numerical and experimental analysis of the interaction between two notches in carbon fibre laminates. Compos. Sci. Technol. 68(3), 1057–1072 (2008)

    Article  Google Scholar 

  12. O’Higgins, R., McCarthy, M., McCarthy, C.: Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials. Compos. Sci. Technol. 6(13), 2770–2778 (2008)

    Article  Google Scholar 

  13. Flatscher, T., Wolfahrt, M., Pinter, G., Pettermann, H.: Simulations and experiments of open hole tension tests—assessment of intra-ply plasticity, damage, and localization. Compos. Sci. Technol. 72(10), 1090–1095 (2012)

    Article  Google Scholar 

  14. Pidaparti, R., Palakal, M.: Material model for composites using neural networks. AIAA J. 31(8), 1533–1535 (1993)

    Article  Google Scholar 

  15. Labossiere, P., Turkkan, N.: Failure prediction of fibre-reinforced materials with neural networks. J. Reinf. Plast. Compos. 12(12), 1270–1280 (1993)

    Article  Google Scholar 

  16. Lee, C., Hwang, W., Park, H., Han, K.: Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks. Compos. Sci. Technol. 59(12), 1779–1788 (1999)

    Article  Google Scholar 

  17. Lee, J., Almond, D., Harris, B.: The use of neural networks for the prediction of fatigue lives of composite materials. Compos. A Appl. Sci. 30(10), 1159–1169 (1999)

    Article  Google Scholar 

  18. Velten, K., Reinicke, R., Friedrich, K.: Wear volume prediction with artificial neural networks. Tribol. Int. 33(10), 731–736 (2000)

    Article  Google Scholar 

  19. Al-Assaf, Y., El Kadi, H.: Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks. Compos. Struct. 53(1), 65–71 (2001)

    Article  Google Scholar 

  20. Zhang, Z., Friedrich, K., Velten, K.: Prediction on tribological properties of short fibre composites using artificial neural networks. Wear 252(7), 668–675 (2002)

    Article  Google Scholar 

  21. Zhang, Z., Friedrich, K.: Artificial neural networks applied to polymer composites: a review. Compos. Sci. Technol. 63(14), 2029–2044 (2003)

    Article  Google Scholar 

  22. Kadi, H.E.: Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—a review. Compos. Struct. 73(1), 1–23 (2006)

    Article  Google Scholar 

  23. Perera, R., Barchin, M., Arteaga, A., Diego, A.D.: Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks. Compos. B Eng. 41(4), 287–298 (2010)

    Article  Google Scholar 

  24. Camara, E.C.B., Freire, R.C.S.: Using neural networks to modeling the transverse elasticity modulus of unidirectional composites. Compos. B Eng. 42(7), 2024–2029 (2011)

    Article  Google Scholar 

  25. Bashir, R., Ashour, A.: Neural network modelling for shear strength of concrete members reinforced with FRP bars. Compos. B Eng. 43(8), 3198–3207 (2012)

    Article  Google Scholar 

  26. Varol, T., Canakci, A., Ozsahin, S.: Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy. Compos. B Eng. 54, 224–233 (2013)

    Article  Google Scholar 

  27. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  28. Specht, D.F.: Enhancements to probabilistic neural networks. In: Proceedings of the IEEE International Joint Conference on, Neural Networks, pp. 761–768 (1992)

  29. Noor, A.K., Starnes, J.H., Peters, J.M.: Uncertainty analysis of composite structures. Comput. Methods Appl. Mech. 185(2), 413–432 (2000)

    Article  Google Scholar 

  30. Manan, A., Cooper, J.: Design of composite wings including uncertainties: a probabilistic approach. J. Aircr. 46(2), 601–607 (2009)

    Article  Google Scholar 

  31. Sriramula, S., Chryssanthopoulos, M.K.: Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos. A Appl. Sci. 40(11), 1673–1684 (2009)

    Article  Google Scholar 

  32. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  Google Scholar 

  33. Tan, S.C.: Laminated composites containing an elliptical opening. II Experiment and model verification. J. Compos. Mater. 21(10), 949–968 (1987)

    Article  Google Scholar 

  34. Afaghi-Khatibi, A., Ye, L., Mai, Y.: An effective crack growth for residual strength evaluation of composite laminates with circular holes. J. Compos. Mater. 30(2), 142–163 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, HT., Wang, H. Predicting the Open-Hole Tensile Strength of Composite Plates Based on Probabilistic Neural Network. Appl Compos Mater 21, 827–840 (2014). https://doi.org/10.1007/s10443-014-9387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9387-2

Keywords

Navigation