Skip to main content
Log in

Orientation Dependency and Hysteresis Nature of Inter-Ply Friction in Woven Fabrics

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Inter-ply slippage is known to be an important mechanism taking place during forming processes of textile composites, especially with respect to multi-layer fabric lay-ups. The coefficient of friction between the plies strongly depends on the structure and the orientation of forming fabric. Despite many numerical and experimental investigations, this dependency and its effect on the interaction between the plies has been overlooked. In this paper, the effect of fiber orientation on the interlayer friction of a typical thermoplastic fabric prepreg at room temperature is investigated. Results, through a polar representation of data, revealed that both static and dynamic coefficients of friction are statistically dependent on the lay-up orientation, applied normal load, along with their interaction. Further, it was identified that the repeated frictional loading of the plies results in a hysteresis, particularly for asymmetric layups due to non-negligible movement and realignment of filaments at the micro-scale. Finally, an empirical model was developed using an interpolation function (for pressure dependency) combined with a Fourier series (for orientation dependency), to predict the coefficients of friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xiang, Z., Liu, Y., Zhou, X., Wu, Z., Hu, X.: Interlayer contact mechanism of the frictional behavior of glass-fiber woven fabrics and improvements of winding characteristics. Composite Structures 111497 (2019). https://doi.org/10.1016/j.compstruct.2019.111497.

  2. Dixit, A., Mali, H.S.: Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review. Mech. Compos. Mater. 49, 1–20 (2013). https://doi.org/10.1007/s11029-013-9316-8

    Article  Google Scholar 

  3. Whitcomb, J.D.: Three-dimensional stress analysis of plain weave composites. in: Anonymous (Eds), Composite materials: fatigue and fracture (third volume), ASTM International, (1991).

  4. Parnas, R.S.: Liquid composite molding. Carl Hanser Verlag GmbH Co KG, (2014).

  5. Potter, K.D.: The early history of the resin transfer moulding process for aerospace applications. Compos. A Appl. Sci. Manuf. 30, 619–621 (1999)

    Article  Google Scholar 

  6. Rudd, C.D., Long, A.C., Kendall, K.N., Mangin, C.: Liquid moulding technologies: Resin transfer moulding, structural reaction injection moulding and related processing techniques. Elsevier, (1997).

  7. Strong, A.B.: Fundamentals of composites manufacturing: materials, methods and applications. Society of Manufacturing Engineers, (2008).

  8. Nezami, F.N., Gereke, T., Hübner, M., Döbrich, O., Cherif, C.: FACTORS OF PROCESS ROBUSTNESS IN MULTILAYER PREFORMING OF CARBON FIBRE REINFORCEMENTS. (2014).

  9. Liu, L., Chen, J., Zhu, B., Yu, T.X., Tao, X.M., Cao, J.: The yarn-to-yarn friction of woven fabrics. Proceeding of 9th International ESAFORM Conference on Materials Forming. Citeseer. 26–28 (2006).

  10. Cornelissen, B., Sachs, U., Rietman, B., Akkerman, R.: Dry friction characterisation of carbon fibre tow and satin weave fabric for composite applications. Compos. A Appl. Sci. Manuf. 56, 127–135 (2014)

    Article  CAS  Google Scholar 

  11. Allaoui, S., Hivet, G., Wendling, A., Ouagne, P., Soulat, D.: Influence of the dry woven fabrics meso-structure on fabric/fabric contact behavior. J Compos Mater. 46, 627–639 (2012)

    Article  Google Scholar 

  12. Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H.S., De Graaf, E.F., Gorczyca, J.L., Harrison, P., Hivet, G., Launay, J.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. A Appl. Sci. Manuf. 39, 1037–1053 (2008)

    Article  Google Scholar 

  13. Launay, J., Hivet, G., Duong, A.V., Boisse, P.: Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Tech. 68, 506–515 (2008)

    Article  Google Scholar 

  14. Marklund, E., Asp, L.E., Olsson, R.: Transverse strength of unidirectional non-crimp fabric composites: Multiscale modelling. Composites Part B: Engineering 65, 47–56 (2014). https://doi.org/10.1016/j.compositesb.2014.01.053

    Article  CAS  Google Scholar 

  15. Peng, X.Q., Cao, J., Chen, J., Xue, P., Lussier, D.S., Liu, L.: Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos Sci and Tech. 64, 11–21 (2004). https://doi.org/10.1016/S0266-3538(03)00202-1

    Article  Google Scholar 

  16. Rahul, P.M., Alshahrani, H., Hojjati, M.: Investigation of intra-ply shear behavior of out-of-autoclave carbon/epoxy prepreg. J Compos Mater. 50, 4251–4268 (2016). https://doi.org/10.1177/0021998316635238

    Article  CAS  Google Scholar 

  17. Ylva, R.L., Malin Åkermo, M.: Norrby, On the in-plane deformability of cross-plied unidirectional prepreg. J Compos Mat. 46, 929–939 (2012). https://doi.org/10.1177/0021998311412988

    Article  CAS  Google Scholar 

  18. Alshahrani, H., Mohan, R., Hojjati, M.: Experimental investigation of in-plane shear deformation of out-of-autoclave prepreg. Int’l J of Compo Mater. 5, 81–87 (2015)

    CAS  Google Scholar 

  19. Nezami, N., Gereke, F.T., Cherif, C.: Analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications. Compos. A Appl. Sci. Manuf. 84, 406–416 (2016). https://doi.org/10.1016/j.compositesa.2016.02.023

    Article  CAS  Google Scholar 

  20. Ersoy, N., Potter, K., Wisnom, M.R., Clegg, M.J.: An experimental method to study the frictional processes during composites manufacturing. Compos. A Appl. Sci. Manuf. 36, 1536–1544 (2005)

    Article  Google Scholar 

  21. Pasco, C., Khan, M., Gupta, J., Kendall, K.: Experimental investigation on interply friction properties of thermoset prepreg systems. J Composite Mater 53, 227–243 (2019)

    Article  CAS  Google Scholar 

  22. Sourki, R., Milani, A.S., Vaziri, R.: Towards understanding and modeling irreversible behavior of woven fabrics under loading-unloading bending regimes. 22nd International Conference on Composites Materials (ICCM22). 4225–4231 (2019).

  23. Dodwell, T.J., Butler, R., Hunt, G.W.: Out-of-plane ply wrinkling defects during consolidation over an external radius. Compos. Sci. Technol. 105, 151–159 (2014). https://doi.org/10.1016/j.compscitech.2014.10.007

    Article  CAS  Google Scholar 

  24. Hallander, P., Akermo, M., Mattei, C., Petersson, M., Nyman, T.: An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos. A Appl. Sci. Manuf. 50, 54–64 (2013). https://doi.org/10.1016/j.compositesa.2013.03.013

    Article  CAS  Google Scholar 

  25. Lin, H., Wang, J., Long, A.C., Clifford, M.J., Harrison, P.: Predictive modelling for optimization of textile composite forming. Compos Sci and Tech. 67, 3242–3252 (2007). https://doi.org/10.1016/j.compscitech.2007.03.040

    Article  CAS  Google Scholar 

  26. Lee, J.S., Hong, S.J., Yu, W., Kang, T.J.: The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Compos Sci and Tech. 67, 357–366 (2007). https://doi.org/10.1016/j.compscitech.2006.09.009

    Article  Google Scholar 

  27. Allaoui, S., Boisse, P., Chatel, S., Hamila, N., Hivet, G., Soulat, D., Vidal-Salle, E.: Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Prt A: Appl. Sci and Mfg. 42, 612–622 (2011). https://doi.org/10.1016/j.compositesa.2011.02.001

    Article  CAS  Google Scholar 

  28. Ouagne, P., Soulat, D., Moothoo, J., Capelle, E., Gueret, S.: Complex shape forming of a flax woven fabric; analysis of the tow buckling and misalignment defect. Composites Part A: Applied Science and Manufacturing 51, 1–10 (2013). https://doi.org/10.1016/j.compositesa.2013.03.017

    Article  CAS  Google Scholar 

  29. Wang, Y., Chen, X., Young, R., Kinloch, I.: Finite element analysis of effect of inter-yarn friction on ballistic impact response of woven fabrics. Compos. Struct. 135, 8–16 (2016). https://doi.org/10.1016/j.compstruct.2015.08.099

    Article  Google Scholar 

  30. Gorczyca, J.L., Sherwood, J.A., Liu, L., Chen, J.: Modeling of friction and shear in thermostamping of composites-part I. J Compos Mater. 38, 1911–1929 (2004)

    Article  Google Scholar 

  31. Das, A., Kothari, V.K., Vandana, N.: A study on frictional characteristics of woven fabrics. AUTEX Research Journal 5, 133–140 (2005)

    Google Scholar 

  32. Ten Thije, R., Akkerman, R., Van Der Meer, L., Ubbink, M.P.: Tool-ply friction in thermoplastic composite forming. Int. J. Mater. Form. 1, 953–956 (2008)

    Article  Google Scholar 

  33. Ten Thije, R., Akkerman, R.: Design of an experimental setup to measure tool-ply and ply-ply friction in thermoplastic laminates. Int. J. Mater. Form. 2, 197 (2009)

    Article  Google Scholar 

  34. Cornelissen, B., Rietman, B., Akkerman, R.: Frictional behaviour of high performance fibrous tows: Friction experiments. Compos. A Appl. Sci. Manuf. 44, 95–104 (2013)

    Article  CAS  Google Scholar 

  35. Najjar, W., Pupin, C., Legrand, X., Boude, S., Soulat, D., Dal Santo, P.: Analysis of frictional behaviour of carbon dry woven reinforcement. J Reinf Plast Compos. 33, 1037–1047 (2014)

    Article  CAS  Google Scholar 

  36. Sun, J., Li, M., Gu, Y., Zhang, D., Li, Y., Zhang, Z.: Interply friction of carbon fiber/epoxy prepreg stacks under different processing conditions. J Compos Mater. 48, 515–526 (2014). https://doi.org/10.1177/0021998313476320

    Article  Google Scholar 

  37. Erland, S., Dodwell, T.J., Butler, R.: Characterisation of inter-ply shear in uncured carbon fibre prepreg. Compos. A Appl. Sci. Manuf. 77, 210–218 (2015). https://doi.org/10.1016/j.compositesa.2015.07.008

    Article  CAS  Google Scholar 

  38. Wang, L., Xu, P., Peng, X., Zhao, K., Wei, R.: Characterization of inter-ply slipping behaviors in hot diaphragm preforming: Experiments and modelling. Compos. A Appl. Sci. Manuf. 121, 28–35 (2019). https://doi.org/10.1016/j.compositesa.2019.03.012

    Article  CAS  Google Scholar 

  39. Rashidi, A., Montazerian, H., Yesilcimen, K., Milani, A.S.: Experimental characterization of the inter-ply shear behavior of dry and prepreg woven fabrics: Significance of mixed lubrication mode during thermoset composites processing. Compos. A Appl. Sci. Manuf. 129, 105725 (2020). https://doi.org/10.1016/j.compositesa.2019.105725

    Article  CAS  Google Scholar 

  40. Allaoui, S., Cellard, C., Hivet, G.: Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms. Compos. A Appl. Sci. Manuf. 68, 336–345 (2015)

    Article  CAS  Google Scholar 

  41. Rebouillat, S.: Tribological properties of woven para-aramid fabrics and their constituent yarns. J Mater Sci 33, 3293–3301 (1998)

    Article  CAS  Google Scholar 

  42. Hivet, G., Allaoui, S., Cam, B.T., Ouagne, P., Soulat, D.: Design and potentiality of an apparatus for measuring yarn/yarn and fabric/fabric friction. Exp Mech. 52, 1123–1136 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada, as well as the Composites Research Network (CRN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas S. Milani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

ANOVA normality assumptions

Residuals from the ANOVA models were employed to assess normality plots shown in Fig. 12. The distribution of the residuals confirmed the assumption of normality in the analyses, and hence the use of standard (parametric) ANOVA for the obtained friction test datasets.

Fig. 12
figure 12

The residual plots, confirming the normality assumption of the ANOVA models. This has been performed using MATLAB’s Statistical Toolbox for each input factor with respect to each output, resulting in the six plots. The two-way ANOVA model demonstrates that the two (input) design and process variables used (i.e. relative fabric orientation and applied normal pressure) have a statistically-significant effect on the system response (frictional behavior), given the p-values in Table 3 and 4. Accordingly, the empirical model included these two variables, and resulted in the coefficients of determination as high as 99% per Table 5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourki, R., Crawford, B., Vaziri, R. et al. Orientation Dependency and Hysteresis Nature of Inter-Ply Friction in Woven Fabrics. Appl Compos Mater 28, 113–127 (2021). https://doi.org/10.1007/s10443-020-09846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09846-y

Keywords

Navigation