Skip to main content
Log in

Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review

  • Published:
Mechanics of Composite Materials Aims and scope

The paper reviews the past and recent modeling techniques (both analytical and numerical) pertaining to the mechanical behavior of textile-reinforced composites in general and woven fabric textile composites in particular published in the literature. The finite-element analysis of repeating unit cell geometry in association with the homogenization technique proves to be vital in predicting the properties. The purpose of this paper is not only to discuss the different modeling strategies and the mathematics involved, but also to provide the reader with an overview of the investigations conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Li and A. E. Shiekh, “The effect of processes and processing parameters on 3-D braided preforms for composites,” 33th Int. SAMPE Symp., 104–115 (1988).

  2. L. V. Smith and S. R. Swanson, “Micro-mechanics parameters controlling the strength of braided composites,” Composites Science and Technology, 54, 177–184 (1995).

    Article  CAS  Google Scholar 

  3. N. K. Naik and V. K. Ganesh, “Prediction of on-axes elastic properties of plain weave fabric composites,” Composites Science and Technology,” 45, 135–152 (1992).

    Article  Google Scholar 

  4. J. M. Yang, C. L. Ma, and T. W. Chou, “Fiber inclination model of three-dimensional textile structural composites,” J. Compos. Mater., 20, 472–483 (1986).

    Article  CAS  Google Scholar 

  5. Christopher M. Pastore, “Opportunities and challenges for textile reinforced composites,” Mech. Compos. Mater., 36, No. 2, 97–116, (2000).

    Article  Google Scholar 

  6. W. L. Wu, M. Kotaki, , H Hamada, and Z. I. Maekawa, “Mechanical properties of warp-knitted, fabric-reinforced composites,” J. Reinforced Plastics and Composites, 12, 1096–1110 (1993).

    Google Scholar 

  7. D. Laroche, V. T. Khanh, and H. Julien, “Forming of woven fabric composites,” J. Compos. Mater., 28, 1825–1839 (1994).

    Article  Google Scholar 

  8. E. Miller, Textiles. Properties and Behaviour. Batsford, London, 1973.

    Google Scholar 

  9. E. L. George, Applied Textiles, 6th edn. The Van Rees Press, New York, 1961.

    Google Scholar 

  10. J. M. Strong, Foundations of Fabric Structures. National Trade, 1952.

  11. W. S. Kuo, “Elastic behavior and damage of three-dimensional woven fabric composites,” Tenth Int. Conf. Composite Materials, 301–308 (1995).

  12. A. V. Roze and I. G. Zhigun, “Three-dimensional reinforced fabric materials. 1. Calculation model,” Polym. Mech., 6, No. 2, 272–278 (1970).

    Article  Google Scholar 

  13. A. M. Tolks, I. A. Repelis, M. P. Gailite, and V. A. Kantsevich, “Carcasses for three-dimensional reinforcement woven in one piece,” J. Mech. Compos. Mater., 22, No. 5, 541–545 (1986).

    Article  Google Scholar 

  14. A. Morales and C. Pastore, “Computer-aided design methodology for three dimensional woven fabrics,” FIBER-TEX 90, CP 3128, NASA Langley Research Center, 85–96, (1990)

  15. D. L. Smith and H. B. Dexter, “Woven-fabric composites with improved fracture toughness and damage tolerance,” Proc of FIBER-TEX 91, CP 3038, NASA, 75–89, (1991)

  16. R. A. Naik, “Failure analysis of woven and braided fabric-reinforced composites,” J. Compos. Mater., 29, 2334–2363 (1995).

    Article  Google Scholar 

  17. T. W. Chou and F. K. Ko, Textile Structural Composites. In Composite Materials Series, Elsevier, Amsterdam, 3, 1989.

  18. G. W. Du and T. W. Chou, “Analysis of three-dimensional textile preforms for multidirectional reinforcement of composites,” J. Mater. Sci., 26, 3438–3448 (1991).

    Article  CAS  Google Scholar 

  19. G. W. Du and F. K. Ko, “Unit cell geometry of 3-D braided structures,” J. of Reinforced Plastics and Composites,” 12, 752–768 (1993).

    Article  Google Scholar 

  20. J. I. Curisks, Weft Knitting Technology and Advanced Composite Material, CRC-AS Seminar, Sydney, Australia (1996).

  21. A. Fujita, A. Yokoyama, and H. Hamada, “Simulation of mechanical behaviors of knitted fabric composites by a numerical analysis method,” Proc. of the American Soc. for Composites, Technical Conf., 581–590 (1995).

  22. X. P. Ruanand and T. W. Chou, “Experimental and theoretical studies of the elastic behavior of knitted-fabric composites,” Compos. Sci. and Techn., 56, 1391–1403 (1996).

    Article  Google Scholar 

  23. T. Cruse, Boundary Element Analysis in Computational Fracture Mechanics. Kluwer, Dordrecht, the Netherlands (1998).

  24. D. Swenson and A. Ingraffea, “Modeling mixed-mode dynamic crack propagation using finite elements: Theory and applications,” Computational Mechanics, 3, 381–397 (1988).

    Article  Google Scholar 

  25. T. Belytschko, and Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng, 45, 602–620 (1999).

  26. A. Tabiei and Y. Jiang, “Woven-fabric composite material model with material nonlinearity for nonlinear finite element simulation,” Int. J. of Solids and Structures, 25, 1646–1660 (1999).

    Google Scholar 

  27. S.-P. Ng and K.-J. Lau, “Numerical and experimental determination of in-plane elastic properties of 2/2 twill weave fabric composites,” Composites: Pt. B, 29, No. 6, 735–44 (1998).

    Article  Google Scholar 

  28. L. Tong, A. P. Mouritz, and M. K. Bannister, 3D Fiber Reinforced Polymer Composites, Elsevier, ISBN:0-08-043938-1 (2002).

  29. M. H. Sadd, Elasticity Theory, Application and Numerics, Elsevier; ISBN: 0-12-605811-3 (2005).

  30. F. T. Pierce, “The geometry of cloth structure,” J. Text. Inst, 28, T45–T97 (1937).

    Article  Google Scholar 

  31. S. V. Lomov, A. V. Gusakov, G. Huysman, A. Prodromou, and I. Verpoest, “Textile geometry preprocessor for mesomechanical models of woven composites,” Compos. Sci. Technology, 60, 2083–2095 ( 2000).

    Article  Google Scholar 

  32. F. Robitaille, B. R. Clayton., A. C. Long, B. J Souter, and C. D. Rudd, “Geometric modeling of industrial preforms: Woven and braided textiles,” Proc. Inst. Mech. Engrs, Pt L: J. Materials: Design and Applications, 213, 69–84 (1999).

    Google Scholar 

  33. F. Robitaille, B. R. Clayton, A. C. Long, B. J. Souter, and C. D. Rudd, “Geometric modeling of industrial preforms: Warp-knitted textiles,” Proc. Inst. Mech. Engrs, Pt L: J. Materials: Design and Applications, 214, 71–90 (2000).

    Google Scholar 

  34. M. Sherburn, F. Robitaille A. Long, and C Rudd, “Geometric pre-processor for the calculation of physical properties of textiles,” Proc. of the Industrial Simulation Conf., Malaga, Spain, 479–486 (2004).

  35. F. Robitaille, A. C. Jones, A. Long, and C. D. Rudd, “Automatically generated geometric descriptions of textile and composite unit cells,” Composites: Pt. A, 34, 303–312 (2003).

    Article  Google Scholar 

  36. J. Hofstee, H. de Boer, and van F. Keulen, “Elastic stiffness analysis of a thermo-formed plain-weave fabric composite. Pt. I: Geometry,” Compos. Sci. Technology, 60, 1041–1053 (2000).

    Article  CAS  Google Scholar 

  37. J. Hofstee and F. van Keulen, “3-D geometric modeling of a draped woven fabric,” Compos. Structures, 54 179–195 (2001).

    Article  Google Scholar 

  38. A. F. Kregers and Yu. G. Melbardis, “Determination of the deformability of three-dimensionally reinforced composites by the stiffness averaging method,” Polym. Mech., 14, No. 1, 1–5 (1978).

    Article  Google Scholar 

  39. A. F. Kreger and G. A. Teters, “Optimization of the structure of three-dimensionally reinforced composites in stability problems,” Mech. Compos. Mater., 15, No. 1, 64–69 (1979).

    Article  Google Scholar 

  40. A. F. Kregers and G. A. Teters, “Determination of the elastoplastic properties of spatially reinforced composites by the averaging method,” Mech. Compos. Mater., 17, No. 1, 25–31 (1981).

    Article  Google Scholar 

  41. T. Ishikawa and T. W. Chou, “One-dimensional micromechanical analysis of woven fabric composites,” AIAA J., 21, No. 12, 1714–1721 (1983).

    Article  Google Scholar 

  42. T. Ishikawa and T. W. Chou, “Stiffness and strength behavior of woven fabric composite,” J. of Material Sci., 17, 3211–20 (1982).

    Article  Google Scholar 

  43. N. K. Naik and P. S. Shembekar, “Elastic behavior of woven fabric composites: I-Lamina analysis,” J. of Composite Materials. 26, No. 15, 2197–2225 (1992).

    Article  Google Scholar 

  44. P. S. Shembekar and N. K. Naik, “Elastic behavior of woven fabric composites: II-Laminate analysis,” J. of Composite Materials, 26, No. 15, 2226–2246 (1992).

    Article  Google Scholar 

  45. H. T. Hahn, and R. Pandey, “A micromechanics model for thermo-elastic properties of plain weave fabric composites,” J. of Engineering Materials and Technology, 116, 517–523 (1994).

    Article  CAS  Google Scholar 

  46. I. Raju, and J. T. Wang, “Classical laminate theory models for woven fabric composites,” J. of Composites Technology and Research, 16, No. 4, 289–303 (1994).

    Article  Google Scholar 

  47. T. Ishikawa and T. W. Chou, “Elastic behavior of woven hybrid composites,” J. Compos. Mater., 6, No. 1, 2–19 (1982).

    Article  Google Scholar 

  48. T. J. Whitney and T. W. Chou, “Modeling of 3-D angle-interlock textile structural composites,” J. Compos. Mater., 23, No. 9, 891–911 (1989).

    Article  Google Scholar 

  49. Y. C. Zhang and J. Harding, “A numerical micromechanics analysis of the mechanical properties of a plain weave composite,” Computer and Structures, 36, No. 5, 839–844 (1990)

    Article  Google Scholar 

  50. N. K. Naik and V. K. Ganesh, “An analytical method for plain weave fabric composites,” Composites, 26, 281–289 (1995).

    Article  Google Scholar 

  51. O. Soykasap, “Analysis of plain-weave composites”, Mech. Compos. Mater., 47, No. 2, 161–176, (2011).

    Article  Google Scholar 

  52. H. Ichihashi, H. Hamada, N. Likuta, and Z. Maekawa, “Finite element analysis of woven fabric composites considering interfacial properties,” The Annual Meeting of the Society of Interfacial Science in Composites, Japan, 2, No. 2 (1994).

  53. B. V. Sankar. and, R. V. Marrey, “A unit-cell model of textile composite beams for predicting stiffness properties,” Compos. Sci. and Techn., 49, No. 1, 61–69 (1993).

    Article  Google Scholar 

  54. Ph. Vandurzen, J. Ivens, and I. Verpoest. “A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis,” Compos. Sci. and Techn., 56, 1303–1315 (1996).

    Article  Google Scholar 

  55. E. D. Amato, “Finite element modelling of textile composite,” Compos. Struct, 54, 467–475 (2001).

    Article  Google Scholar 

  56. D. S. Ivanov, S. V. Lomov, I. Verpoest, and A. Tashkinov, “Local elastic properties of a shaped textile composite: Homogenisation algorithm,” Proc. of the 6th Int. ESAFORM Conf. on Material Forming, Salerno, Italy, pp. 839–842 (2003).

  57. P. Rupnowski and M. Kumosa, “Meso- and microstress analyses in an 8HS graphite/polyimide woven composite subjected to biaxial in-plane loads at room temperature,” Compos. Sci. Techn., 63, 785–799 (2003).

    Article  CAS  Google Scholar 

  58. E. H. Glaessgen, H.Griffin, C. M. Pastore, and A. Birger, “Modeling of textile composites,” ICC, 1183–184 (1994).

  59. E. H. Glaessgen, C. M. Pastore, H. Griffin, and A. Birger, “Geometrical and finite element modeling of textile composites,” Composites: Pt. B, 2l, 43–50 (1996).

    Article  Google Scholar 

  60. Y. C. Zhang and Y. Dai, “A model for prediction of mechanical behaviour of fabric composite material laminae,” in Ninth Int. Conf. on Composite Materials (ICCMIY), 4, 628–634 (1993).

  61. B. N Cox, W. C. Carter, and N. A. Fleck, “A binary model of textile composites-I,” Formulation. Actu. Metallurgical et Materiulia, 42, No. 10, 3463–3479 (1994).

    Article  CAS  Google Scholar 

  62. K. Woo, and J. D. Whitcomb, “Three-dimensional failure analysis of plain weave textile composites using a global/local finite element method,” J. Compos. Mater., 30, No. 9, 984–1003 (1996).

    Article  Google Scholar 

  63. K. Pochiraju, B. Shan., A. Parvizi-Majidi, and T. W. Chou, “Bending response of 3-D woven and braided preform composite material,” The Ninth Int. Conf. on Composite Material, 1135–1144 (1994).

  64. T. J. Walsh and O. Ochoa. “Analytical and experimental mechanics of woven fabric composites,” Mechanics of Composite Materials and Structures, 3, 133–152 (1996).

    Article  CAS  Google Scholar 

  65. Y. P. Jiang, W. L. Guo, and Z. F. Yue, “Investigation of the three-dimensional micromechanical behavior of wovenfabric composites”, Mech. Compos. Mater., 42, No. 2, 141–150 (2006).

    Article  CAS  Google Scholar 

  66. S. Li., Zhou, C. Yu, and L. Li, “Formulation of a unit cell of reduced size for plain-weave textile composites,” Computational Material Science, 50, 1770–1780 (2011).

  67. C. T. Sun. and R. S. Vaidya, “Prediction of composite properties from a representative volume element,” Compos. Sci. and Techn., 56, 171–179 (1996).

    Article  CAS  Google Scholar 

  68. Q. Yang and B. N. Cox, “Predicting local strains in textile composites using the binary model formulation,” Proc. of the 14th Int. Conf. on Composite Materials, San Diego, USA, 2003.

  69. Y. M. Yu, X. J. Wang, Y. C. Li, and Z. H. Wang, “Cell model of 3D woven orthogonal woven composite and its application,” Acta Mater. Compos. Sin, 26, No. 4, 181–185 (2009).

    Google Scholar 

  70. C. E. I. Hage, R. Younes, Z. Aboura, M. L. Benzeggagh, and M. Zoaeter, “Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP,” Acta Mater. Compos. Sin, 26, 111–116 (2009).

    Google Scholar 

  71. S. J. Kim, C. S Lee, and H. Shin, “Virtual experimental characterization of 3D orthogonal woven composite materials,” AIAA, 1570 (2001).

  72. S. J. Kim, K. H. Ji, and S. H. Paik, “Numerical simulation of mechanical behavior of composite structures by supercomputing technology,” Adv. Composite Materials, 17, 373–407 (2008).

    Article  Google Scholar 

  73. C. S. Lee, S. W. Chung, H. Shin, and S. J. Kim, “Virtual material characterization of 3D orthogonal woven composite materials by large-scale computing,” J. Compos. Mater., 39, 851–863 (2005).

    Article  CAS  Google Scholar 

  74. N. K. Kucher, A. Z. Dveyrin, M. N. Zarazovski, and M. P. Zemtsov, “Room- and low-temperature deformation of multilayered fiberglass plastics reinforced with a fabric of sateen weave,” Mech. Compos. Mater., 40, No. 3 (2004).

    Google Scholar 

  75. D. M. Thompson, “Cross ply laminates with holes in compression: straight free edge by 2D to 3D global/local finite element analysis,” J. of Compos. Engineering, 9, 745–756 (1993).

    Google Scholar 

  76. J. Whitcomb and K. Srirengan, “Effect of various approximations on predicted progressive failure in plain weave composites,” Composite Structures, 34, 13–20 (1996).

    Article  Google Scholar 

  77. V. R. Aitharaju and R. C. Averill. “Three-dimensional properties of woven-fabric composites,” Compos. Sci. and Techn., 59, 1901–1911 (1999).

    Article  Google Scholar 

  78. R. A. Naik, “Analysis of woven and braided fabric reinforced composite,” J. Composite Material, 19, 88–104 (1994).

    Google Scholar 

  79. P. Tan, L. Tong, and G. P. Steven, “A three dimensional modeling technique for predicting the linear elastic property of opened-packing oven fabric unit cell,” Composite Structures, 38, 261–271 (2006)

    Article  Google Scholar 

  80. P. Tan, L. Tong, and G. P Steven, “Modeling approaches for 3D orthogonal woven composites,” J. Reinforced Plastic Composite, 17, No. 6, 545–77 (1998).

    CAS  Google Scholar 

  81. P. Tan, L. Tong., and G. P. Steven, “Models for predicting thermo mechanical properties of three-dimensional orthogonal woven composites,” J. of Reinforced Plastic Compos., 18, No. 2, 151–85 (1999).

    Google Scholar 

  82. P. Tan, L. Tong, and G. P. Steven, “Behavior of 3D orthogonal woven CFRP composites. Pt. II,” Composites: Pt. A, 31, No. 3, 273–281 (2000).

    Article  Google Scholar 

  83. Y. W. Kwon and K. Roach, “Unit-cell model of 2/2 twill woven fabric composites for multiscale analysis,” CMES, 5, 63–72 (2004).

    Google Scholar 

  84. Y. W. Kwon,“Calculation of effective moduli of fibrous composites with or without micro-mechanical damage,” Composite Structures, 25, 187–192 (1993).

    Article  Google Scholar 

  85. Y. W. Kwon and J. M. Berner, “Micro-mechanics model for damage and failure analyses of laminated fibrous composites,” Engineering Fracture Mechanics, 52, 231–242 (1995).

    Article  Google Scholar 

  86. Y. W. Kwon and L. E. Craugh, “Progressive failure modeling in notched cross-ply fibrous composites,” Appl. Compos. Mater., 8, 63–74 (2001).

    Article  Google Scholar 

  87. Y. W. Kwon and A. Altekin, “Multi-level, micro/macro-approach for analysis of woven fabric composite plates,” J. Compos. Mater., 36, No. 8, 1005–1022 (2002).

    Article  CAS  Google Scholar 

  88. S. P. Yushanov and A. E. Bogdanovich, “Fiber waviness in textile composites and its stochastic modeling,” Mech. Compos. Mater., 36, No. 4, 297–318 (2000).

    Article  Google Scholar 

  89. D. Scida and Z. Aboura, “Prediction of the elastic behavior of hybrid and non-hybrid woven composites,” Compos. Sci. and Techn., 59, 1727–1740 (1997).

    Google Scholar 

  90. D. Scida and Z. A. Aboura, “Micromechanics model for 3D elasticity and failure of woven fiber composite material,” Compos. Sci. and Techn., 59, 505–517 (1999).

    Article  CAS  Google Scholar 

  91. P. Chaphalkar and A. Kelkar, “Semi-analytical modeling of progressive damage in twill woven textile composites. Recent advances in solids and structures,” IMECE, PVP-25212 (2001).

  92. H. J. Bohm, W. Han, and A. Eckschlager, “Multiinclusion unit cell studies of reinforcement stresses and particle failure in discontinuously reinforced ductile matrix composites,” Computer Modeling in Engineering and Sci., 5, 5–20 (2004).

    Google Scholar 

  93. P. Raghavan and S. Ghosh, “Adaptive multiscale computational modeling of composite materials,” Computer Modeling in Engineering and Sciences, 5, No. 2, 151–170 (2004).

    Google Scholar 

  94. M. Sherburn, TexGen open source project open online at http://texgen.sourceforge.net/

  95. J. J. Crookston, S. Kari, N. A. Warrior, I. A. Jones, and A. C. Long, “3D textile composite mechanical properties prediction using automated FEA of the unit cell,” Proc. of the 16th Int. Conf. on Composite Materials, 1-7 (2007).

  96. Hua Lin, Mike J. Clifford, A. C. Long, Ken Lee, and Ning Guo, “A finite element approach to the modelling of fabric mechanics and its application to virtual fabric design and testing,” J. of the Textile Institute, 1, 1–14 (2012).

    Google Scholar 

  97. H. J. Kim and C. C. Swan, “Voxel-based meshing and unit-cell analysis of textile composites,” Int. J. Numer. Math. Eng., 56, 977–1006 (2003).

    Article  Google Scholar 

  98. S. A. Smitheman, I. A. Jones, A. C. Long, and W. Ruijter, “A voxel-based homogenization technique for the unit cell thermomechanical analysis of woven composites,” University of Nottingham, University Park, Nottingham NG7 2RD, UK.

  99. Yu. M. Tarnopol’skii and V. L. Kulakov, “Tests methods for composites — Survey of investigations carried out at the IPM of the Latvian Academy of Sciences in 1964-2000,” Mech. Compos. Mater., 37, Nos. 5/6, 431–448 (2001).

    Article  Google Scholar 

  100. S. Fredrik and S. Hallstrom, “Assessment of the mechanical properties of a new 3D woven fiber composite material,” Compos. Sci. Technol., 69, 1686–1692 (2009).

    Article  Google Scholar 

  101. J. Brandt, K Drechsler, M. Mohamed, and P. Gu, “Manufacture and performance of carbon/epoxy 3-D woven composites,” 37th Int. SAMPE Symp., 864–877 (1992).

  102. P. Chaphalkar and A. Kelkar, “Analytical and experimental elastic behavior of twill woven laminate,” Proc. of the 12th Int. Conf. on Composite Materials, Paris, France (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harlal Singh Mali.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 1, pp. 3-30, January-February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixit, A., Mali, H.S. Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review. Mech Compos Mater 49, 1–20 (2013). https://doi.org/10.1007/s11029-013-9316-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9316-8

Keywords

Navigation