Skip to main content
Log in

A Distributed Lumped Parameter Model of Blood Flow

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We propose a distributed lumped parameter (DLP) modeling framework to efficiently compute blood flow and pressure in vascular domains. This is achieved by developing analytical expressions describing expected energy losses along vascular segments, including from viscous dissipation, unsteadiness, flow separation, vessel curvature and vessel bifurcations. We apply this methodology to solve for unsteady blood flow and pressure in a variety of complex 3D image-based vascular geometries, which are typically approached using computational fluid dynamics (CFD) simulations. The proposed DLP framework demonstrated consistent agreement with CFD simulations in terms of flow rate and pressure distribution, with mean errors less than 7% over a broad range of hemodynamic conditions and vascular geometries. The computational cost of the DLP framework is orders of magnitude lower than the computational cost of CFD, which opens new possibilities for hemodynamics modeling in timely decision support scenarios, and a multitude of applications of imaged-based modeling that require ensembles of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Acosta, S., C. Puelz, B. Riviere, D. Penny, and C. Rusin. Numerical method of characteristics for one-dimensional blood flow. J. Comput. Phys. 294:96–109, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arzani, A., and S. Shadden. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys. Fluids 24:081901, 2012.

    Article  CAS  Google Scholar 

  3. Arzani, A., and S. Shadden. Wall shear stress fixed points in cardiovascular fluid mechanics. J. Biomech. 73:145 – 152, 2018.

    Article  PubMed  Google Scholar 

  4. Arzani, A., G. Y. Suh, R. L. Dalman, and S. C. Shadden. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am. J. Physiol. Heart Circ. Physiol. 307(12):H1786–H1795, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baker, S., J. Verweij, E. Rowinsky, R. Donehower, J. Schellens, L. Grochow, and A. Sparreboom. Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J. Natl Cancer Inst. 94(24):1883–1888, 2002.

    Article  CAS  PubMed  Google Scholar 

  6. Barnard, A., W. Hunt, W. Timlake, and E. Varley. A theory of fluid flow in compliant tubes. Biophys. J. 6(6):717–724, 1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Batchelor, G. An Introduction to Fluid Dynamics. New York: Cambridge University Press, 2000.

    Book  Google Scholar 

  8. Bianchi, M., G. Marom, R. Ghosh, O. Rotman, P. Parikh, L. Gruberg, and D. Bluestein. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model. Mechanobiol. 18(2):435–451, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blanco, P., S. Watanabe, M. Passos, P. Lemos, and R. Feijoo. An anatomically detailed arterial network model for one-dimensional computational hemodynamics. IEEE Trans. Biomed. Eng. 62(2):736–753, 2015.

    Article  PubMed  Google Scholar 

  10. Boccadifuoco, A., A. Mariotti, S. Celi, N. Martini, and M. Salvetti. Impact of uncertainties in outflow boundary conditions on the predictions of hemodynamic simulations of ascending thoracic aortic aneurysms. Comput. Fluids. 165:96–115, 2018.

    Article  Google Scholar 

  11. Bockman, M., A. Kansagra, S. Shadden, C. Eric, and A. Marsden. Fluid mechanics of mixing in the vertebrobasilar system: comparison of simulation and mri. Cardiovasc. Eng. Tech. 3(4):450–461, 2012.

    Article  Google Scholar 

  12. Bruning, J., F. Hellmeier, P. Yevtushenko, T. Khne, and L. Goubergrits. Uncertainty quantification for non-invasive assessment of pressure drop across a coarctation of the aorta using CFD. Cardiovasc. Eng. Technol. 9(4):582–596, 2018.

    Article  PubMed  Google Scholar 

  13. Chnafa, C., K. Valen-Sendstad, O. Brina, V. Pereira, and D. Steinman. Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops. J. Biomech. 51:83–88, 2017.

    Article  CAS  PubMed  Google Scholar 

  14. Choi, G., K. Uzu, T. Toba, S. Mori, T. Takaya, T. Shinke, A. Roy, T. Nguyen, S. Khem, C. Taylor, and H. Otake. TCT-333 Accuracy of lumen boundary extracted from coronary CTA for calcified and noncalcified plaques assessed using OCT data. J. Am. Coll. Cardiol. 66(Suppl 15):B134, 2015.

  15. Deplano, V., Y. Knapp, E. Bertrand, and E. Gaillard. Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J. Biomech. 40:2406–2413, 2007.

    Article  PubMed  Google Scholar 

  16. Eck, V., W. Donders, J. Sturdy, J. Feinberg, T. Delhaas, L. Hellevik, and W. Huberts. Uncertainty quantification, sensitivity analysis, cardiovascular modeling, monte carlo, polynomial chaos, fractional flow reserve, arterial compliance. Int. J. Numer. Methods Biomed. Eng. 32(8):e02755, 2016.

    Article  Google Scholar 

  17. Finol, E., and C. Amon. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Engng. 123(5):474–484, 2001.

    Article  CAS  Google Scholar 

  18. Ford, M., N. Alperin, S. Lee, D. Holdsworth, and D. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26(4):477–488, 2005.

    Article  PubMed  Google Scholar 

  19. Ghigo, A., J. Fullana, and P. Lagre. A 2d nonlinear multiring model for blood flow in large elastic arteries. J. Comput. Phys. 350:136–165, 2017.

    Article  Google Scholar 

  20. Grinberg, L., E. Cheever, T. Anor, J. Madsen, and G. Karniadakis. Modeling blood flow circulation in intracranial arterial networks: a comparative 3d/1d simulation study. Ann. Biomed. Eng. 39(1):297–309, 2010.

    Article  PubMed  Google Scholar 

  21. Gundert, T., A. Marsden, W. Yang, and J. LaDisa. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134(1):011002, 2012.

    Article  PubMed  Google Scholar 

  22. Hughes, T., and J. Lubliner. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18(1):161–170, 1973.

    Article  Google Scholar 

  23. Inzoli, F., F. Migliavacca, and S. Mantero. Pulsatile flow in an aorto-coronary bypass 3-D model. Biofluid Mechanics Proceedings of the 3rd International Symposium, 1994.

  24. Ito, H. Laminar flow in curved pipes. J. Appl. Math. Mech. 49(11):653–663, 1969.

    Google Scholar 

  25. Itu, L., S. Rapaka, T. Passerini, B. Georgescu, C. Schwemmer, M. Schoebinger, T. Flohr, P. Sharma, and D. Comaniciu. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J. Appl. Physiol. 121(1):42–52, 2016.

    Article  PubMed  Google Scholar 

  26. Itu, L., P. Sharma, K. Ralovich, V. Mihalef, R. Ionasec, A. Everett, R. Ringel, A. Kamen, and D. Comaniciu. Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements. Ann. Biomed. Eng. 41(4):669–681, 2013.

    Article  PubMed  Google Scholar 

  27. Joly, F., G. Soulez, D. Garcia, S. Lessard, and C. Kauffmann. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of lagrangian-coherent structures. Comput. Biol. Med. 92:98–109, 2018.

    Article  PubMed  Google Scholar 

  28. LaDisa, J., A. Figueroa, I. Vignon-Clementel, h. Kim, N. Xiao, L. Ellwein, F. Chan, J. Feinstein, and C. Taylor. Computational simulations for aortic coarctation: representative results from a sampling of patients. J. Biomech. Eng. 133(9):091008, 2011.

    Article  PubMed  Google Scholar 

  29. LaDisa, J., I. Guler, L. Olson, D. Hettrick, J. Kersten, D. Warltier, and P. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31(8):972–980, 2003.

    Article  PubMed  Google Scholar 

  30. Mantero, S., R. Pietrabissa, and R. Fumero. The coronary bed and its role in the cardiovascular system: a review and an introductory single-branch model. J. Biomed. Eng. 14:109–116, 1992.

    Article  CAS  PubMed  Google Scholar 

  31. Marsden, A. Optimization in cardiovascular modeling. Annu. Rev. Fluid Mech. 46:519–546, 2014.

    Article  Google Scholar 

  32. Mirramezani, M., S. Diamond, H. Litt, and S. Shadden. Reduced order models for transstenotic pressure drop in the coronary arteries. J. Biomech. Eng. 141(3):031005, 2018.

    Article  Google Scholar 

  33. Moore, J., and D. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.

    Article  PubMed  Google Scholar 

  34. Mynard, J., and K. Valen-Sendstad. A unified method for estimating pressure losses at vascular junctions. Int. J. Numer. Methods Biomed. Eng. 31(7):e02717, 2015.

  35. Olufsen, M., C. Peskin, W. Kim, E. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11):1281–1299, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart. Circ. Physiol. 297(1):208–222, 2009.

    Article  CAS  Google Scholar 

  37. Sankaran, S., H. Kim, G. Choi, and C. Taylor. Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J. Biomech. 49(12):2540–2547, 2016.

    Article  PubMed  Google Scholar 

  38. Sankaran, S., M. Moghadam, A. Kahn, E. Tseng, J. Guccione, and A. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40(10):2228–2242, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shadden, S. C., and A. Arzani. Lagrangian postprocessing of computational hemodynamics. Ann. Biomed. Eng. 43(1):41–58, 2015.

    Article  PubMed  Google Scholar 

  40. Shadden, S. C., and S. Hendabadi. Potential fluid mechanic pathways of platelet activation. Biomech. Model. Mechanobiol. 12(3):467–474, 2013.

    Article  PubMed  Google Scholar 

  41. Shadden, S. C., and C. A. Taylor. Characterization of coherent structures in the cardiovascular system. Annals of Biomedical Engineering 36:1152–1162, 2008.

    Article  PubMed  Google Scholar 

  42. Sherwin, S., V. Franke, J. Peiro, and K. Parker. One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3):217–250, 2003.

    Article  Google Scholar 

  43. Song, X., A. Throckmorton, H. Wood, P. Allaire, and D. Olsen. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. Asaio. J. 50(5):410–417, 2004.

    Article  PubMed  Google Scholar 

  44. Tang, B., T. Fonte, F. Chan, P. Tsao, J. Feinstein, and C. Taylor. Three dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions. Ann. Biomed. Eng. 39(1):347–358, 2011.

    Article  PubMed  Google Scholar 

  45. Taylor, C., T. Fonte, and J. Min. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 66(22):2233–2241, 2013.

    Article  Google Scholar 

  46. Taylor. C., and D. Steinman. Image-based modeling of blood flow and vessel wall dynamics: Applications, methods and future directions. Ann. Biomed. Eng. 38:1188–1203, 2010.

    Article  PubMed  Google Scholar 

  47. Toy, S., J. Melbin, and A. Noordergraaf. Reduced models of arterial systems. IEEE Trans. Biomed. Eng. 32:174–176, 1985.

    Article  CAS  PubMed  Google Scholar 

  48. Tran, T., D. Schiavazzi, A. Ramachandra, A. Kahn, and A. Marsden. Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput. Fluids. 142:128–138, 2017.

    Article  PubMed  Google Scholar 

  49. Tse, K., P. Chiu, H. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44(5):827–836, 2011.

    Article  PubMed  Google Scholar 

  50. Updegrove, A., N. Wilson, J. Merkow, H. Lan, A. Marsden, and S. Shadden. Simvascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45(3):525–541, 2017.

    Article  PubMed  Google Scholar 

  51. Wan Ab Naim, W., P. Ganesan, Z. Sun, J. Lei, S. Jansen, S. Hashim, T. Ho, and E. Lim. Flow pattern analysis in type b aortic dissection patients after stent-grafting repair: Comparison between complete and incomplete false lumen thrombosis. Int. J. Numer. Methods Biomed. Eng. 34:2961, 2018.

    Article  Google Scholar 

  52. Wang, J., H. Xiao, and S. Shadden. Data-augmented modeling of intracranial pressure. Ann. Biomed. Eng. 47(3):714–730, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, W., J. A. Feinstein, S. C. Shadden, I. E. Vignon-Clementel, and A. L. Marsden. Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. Journal of Biomechanical Engineering 135(1):011002, 2013.

    Article  PubMed  Google Scholar 

  54. Young, D., and F. Tsa. Flow characteristics in models of arterial stenoses-i. steady flow. J. Biomech. 6(4):403–410, 1973.

    Article  Google Scholar 

  55. Zamir, M. The Physics of Pulsatile Flow. New York: Springer, 2000.

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH, Grant No. R01-HL103419. The authors thank Dr. Harold I. Litt for providing coronary image data.

Author Contributions

MM developed the methods and performed all computational modeling. MM and SCS conceptualized the study, analyzed and interpreted results, and drafted the manuscript.

Conflict of interest

MM and SCS have a patent pending related to methods described in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Shadden.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Model Boundary Conditions

This section describes the specification of boundary conditions for all models. Further description on the boundary conditions, as well as imaging and available model data, are posted at www.vascularmodel.com. All of the CAD models are available at this site, except the four coronary models, which are uploaded as part of the electronic supplementary material.

Aortic Models

Phase-contrast (PC) MRI was used to measure volumetric flow in the ascending aorta and the respective waveforms for each patient (see inset panels in Fig. 2I) was mapped to the inlet of the CFD models using a time varying parabolic flow profile as the inflow boundary condition. Three-element “RCR” Windkessel models were coupled at all outlets. Information regarding how to choose the RCR parameters for each outlet are detailed in LaDisa et al.28 Regional mesh refinement was in the aortic coarctation models to resolve the complex flow features in the stenotic region.

Aorto-femoral Models

For Model A, an aortic flow waveform was adapted from Olufsen et al. 35 to have a mean cardiac output of 4.6 L/min (female). For Model B the supraceliac aorta blood flow waveform was derived from PC-MRI. For Models C and D individualized inflow boundary conditions were determined based on the Baker equation,5 relating body surface area to cardiac output, and assuming that \(\sim \,70\%\) of the cardiac output is distributed to the supraceliac aorta.36 The resulting mean flows were used to generate inflow waveforms by scaling a gender-matched representative supraceliac aortic flow waveform. RCR models were applied at each outlet. The RCR parameters for each outlet were determined based on flow distributions to the outlets obtained from clinical PC-MRI measurements for Model B, or from literature data33 for Models A, C and D.

Coronary Models

In all cases, aortic flow was prescribed at the inlet, an RCR of the systemic circulation was coupled at the aortic outlet, and coronary-specific LPNs (see Fig. 6I) that consider the time-dependent intramyocardial pressure were coupled at each coronary outlet (separate LPN for each outlet). The effect of intramyocardial pressure is modeled by scaling the typical left and right ventricular pressures to recover realistic coronary flow waveforms. The LPN parameters of the systemic and coronary outlets were tuned to match target pressure and flow splits to the aorta and systemic and coronary outlets. A detailed description of the tuning procedure is given in Sankaran et al.38 Mesh refinement was used in all cases with stenotic lesions.

Cerebrovascular Models

For all models, a characteristic vertebral blood flow waveform from the literature18 was scaled to match time-averaged PC-MRI measurements in the vertebral arteries and mapped to a time-varying parabolic profile at the model inlet. Resistance boundary conditions were used at the outlets. A total resistance was calculated and distributed amongst the outlets by assuming all outlets act in parallel with resistance values inversely proportional to the outlet area. More details on boundary conditions are given in Bockman et al.11

Pulmonary Models

Pulmonary blood flow waveforms from PC-MRI were applied to the inlet of each model. The inflow waveforms were manipulated to have zero back flow to avoid numerical instability in the CFD simulations. Resistance values were assigned at the outlets based on the estimated mean pressure values for each patient, cross sectional area of the outlets, and left to right pulmonary flow split ratio obtained from PC-MRI data. Detailed description of resistance tuning for the pulmonary modeling is given in Tang et al.44

Congenital Heart Disease Models

PC-MRI data was used to prescribe an inflow waveform to the inlets of computational domains. Inflow waveforms prescribed at the inferior and superior vena cava (IVC, SVC), internal jugular vein (IJV) and broncheocephilic vein (BrS) are shown in Fig. 12I for all models. RCR models were coupled to each outlet, which parameters tuned to match target pressure values and assuming the LPA/RPA flow split ratio to be 45/55 for all patients. All numerical values for boundary condition parameters are available at www.vascularmodel.com.

Appendix B: Representative Example of DLP Modeling Results

A representative example of the computed resistance values from DLP modeling are presented for better understanding the relative contribution of various sources of energy dissipation. Table 1 shows resistance values at systole determined from the patient-specific coronary simulation shown in Fig. 7.

Table 1 Resistance values in cgs units (\(g/s\cdot cm^4\)) at systole from DLP modeling for patient-specific coronary simulation shown in Fig. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirramezani, M., Shadden, S.C. A Distributed Lumped Parameter Model of Blood Flow. Ann Biomed Eng 48, 2870–2886 (2020). https://doi.org/10.1007/s10439-020-02545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02545-6

Keywords

Navigation