Skip to main content
Log in

Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions

Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California

  • Position Paper
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of our session at the 2008 International Bio-Fluid Symposium and Workshop was to review the state-of-the-art in image-based modeling of blood flow, and identify future directions. Here we summarize progress in the field of image-based modeling of blood flow and vessel wall dynamics from mid-2005 to early 2009. We first describe the tremendous progress made in the application of image-based modeling techniques to elucidate the role of hemodynamics in vascular pathophysiology, plan treatments for congenital and acquired diseases in individual patients, and design and evaluate endovascular devices. We then review the advances that have been made in improving the methodology for modeling blood flow and vessel wall dynamics in image-based models, and consider issues related to extracting hemodynamic parameters and verification and validation. Finally, the strengths and weaknesses of current work in image-based modeling and the opportunities and threats to the field are described. We believe that with a doubling of our efforts toward the clinical application of image-based modeling tools, the next few years could surpass the tremendous gains made in the last few.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysms

ALE:

Arbitrary Lagrangian–Eulerian

CFD:

Computational fluid dynamics

CT:

Computed tomography

IMT:

Intima-media thickness

IUVS:

Invasive intravascular ultrasound

MRA:

Magnetic resonance angiograms

MRI:

Magnetic resonance imaging

PC-MRI:

Phase contrast magnetic resonance imaging

US:

Ultrasound

WSS:

Wall shear stress

References

  1. Acevedo-Bolton, G., L. D. Jou, B. P. Dispensa, M. T. Lawton, R. T. Higashida, A. J. Martin, W. L. Young, and D. Saloner. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: Technical case report. Neurosurgery 59:E429–E430, 2006; author reply E429–E430.

    Google Scholar 

  2. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097–1112, 2008.

    Article  PubMed  Google Scholar 

  3. Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46:77–81, 2009.

    PubMed  Google Scholar 

  4. Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.

    Article  PubMed  Google Scholar 

  5. Appanaboyina, S., F. Mut, R. Lohner, C. A. Putman, and J. R. Cebral. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int. J. Numer. Meth. Fluids 57:475–493, 2008.

    Article  CAS  Google Scholar 

  6. Augst, A. D., B. Ariff, G. T. S. A. Mc, X. Y. Xu, and A. D. Hughes. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293:H1031–H1037, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Babuska, I., and J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Comput. Meth. Appl. Mech. Eng. 193:4057–4066, 2004.

    Article  Google Scholar 

  8. Bazilevs, Y., V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38:310–322, 2006.

    Article  Google Scholar 

  9. Bekkers, E. J., and C. A. Taylor. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Trans. Med. Imaging 27:331–341, 2008.

    Article  PubMed  Google Scholar 

  10. Bijari, P. B., L. Antiga, and D. A. Steinman. Reliability of vascular geometry factors derived from clinical MRA. In: Proc. SPIE Medical Imaging, San Diego, CA, 2009.

  11. Blanco, P. J., R. A. Feijoo, and S. A. Urquiza. A unified variational approach for coupling 3d–1d models and its blood flow applications. Comput. Meth. Appl. Mech. Eng. 196:4391–4410, 2007.

    Article  Google Scholar 

  12. Botti, L., M. Piccinelli, B. Ene-Iordache, A. Remuzzi, and L. Antiga. An adaptive mesh refinement solver for large-scale simulation of biological flows. Int. J. Numer. Meth. Biomed. Eng. 26:86–100, 2010.

    Article  Google Scholar 

  13. Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: Comparison with computational fluid dynamics. Magn. Reson. Med. 61:409–417, 2009.

    Article  PubMed  Google Scholar 

  14. Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.

    Article  PubMed  Google Scholar 

  15. Bove, E. L., M. R. de Leval, F. Migliavacca, R. Balossino, and G. Dubini. Toward optimal hemodynamics: computer modeling of the Fontan circuit. Pediatr. Cardiol. 28:477–481, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Castro, M. A., C. M. Putman, and J. R. Cebral. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am. J. Neuroradiol. 27:2061–2068, 2006.

    CAS  PubMed  Google Scholar 

  17. Causin, P., J. F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Meth. Appl. Mech. Eng. 194:4506–4527, 2005.

    Article  Google Scholar 

  18. Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.

    Article  PubMed  Google Scholar 

  19. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26:2550–2559, 2005.

    PubMed  Google Scholar 

  20. Cebral, J. R., and R. Lohner. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging 24:468–476, 2005.

    Article  PubMed  Google Scholar 

  21. Cebral, J. R., R. S. Pergolizzi, and C. M. Putman. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad. Radiol. 14:804–813, 2007.

    Article  PubMed  Google Scholar 

  22. Chatzizisis, Y. S., M. Jonas, A. U. Coskun, R. Beigel, B. V. Stone, C. Maynard, R. G. Gerrity, W. Daley, C. Rogers, E. R. Edelman, C. L. Feldman, and P. H. Stone. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117:993–1002, 2008.

    Article  PubMed  Google Scholar 

  23. Cheng, C., F. Helderman, D. Tempel, D. Segers, B. Hierck, R. Poelmann, A. van Tol, D. J. Duncker, D. Robbers-Visser, N. T. Ursem, R. van Haperen, J. J. Wentzel, F. Gijsen, A. F. van der Steen, R. de Crom, and R. Krams. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 195:225–235, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. J. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006.

    Article  PubMed  Google Scholar 

  25. Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. AAA disease: mechanism, stratification, and treatment. Ann. NY Acad. Sci. 1085:92–109, 2006.

    Article  PubMed  Google Scholar 

  26. de Leval, M. R., P. Kilner, M. Gewillig, and C. Bull. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J. Thorac. Cardiovasc. Surg. 96:682–695, 1988.

    PubMed  Google Scholar 

  27. de Zelicourt, D. A., K. Pekkan, J. Parks, K. Kanter, M. Fogel, and A. P. Yoganathan. Flow study of an extracardiac connection with persistent left superior vena cava. J. Thorac. Cardiovasc. Surg. 131:785–791, 2006.

    Article  PubMed  Google Scholar 

  28. DeGroff, C., B. Birnbaum, R. Shandas, W. Orlando, and J. Hertzberg. Computational simulations of the total cavo-pulmonary connection: insights in optimizing numerical solutions. Med. Eng. Phys. 27:135–146, 2005.

    Article  PubMed  Google Scholar 

  29. Dyverfeldt, P., J. P. Kvitting, A. Sigfridsson, J. Engvall, A. F. Bolger, and T. Ebbers. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J. Magn. Reson. Imaging 28:655–663, 2008.

    Article  PubMed  Google Scholar 

  30. Ethier, C. R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30:461–471, 2002.

    Article  PubMed  Google Scholar 

  31. Feintuch, A., P. Ruengsakulrach, A. Lin, J. Zhang, Y. Q. Zhou, J. Bishop, L. Davidson, D. Courtman, F. S. Foster, D. A. Steinman, R. M. Henkelman, and C. R. Ethier. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292:H884–H892, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez, M. A., J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Meth. Eng. 69:794–821, 2007.

    Article  Google Scholar 

  33. Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for coupled fluid–solid growth modeling in cardiovascular simulations. Comput. Meth. Appl. Mech. Eng. 198:3583–3602, 2009.

    Article  Google Scholar 

  34. Figueroa, C. A., C. A. Taylor, A. J. Chiou, V. Yeh, and C. K. Zarins. Effect of curvature on displacement forces acting on aortic endografts: a three dimensional computational analysis. J. Endovas. Ther. 16:284–294, 2009.

    Article  Google Scholar 

  35. Figueroa, C. A., C. A. Taylor, A. J. Chiou, V. Yeh, and C. K. Zarins. Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16:350–358, 2009.

    Article  PubMed  Google Scholar 

  36. Figueroa, C. A., I. E. Vignon-Clementel, K. C. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Meth. Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  Google Scholar 

  37. Ford, M. D., S. W. Lee, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: towards a surrogate geometric marker of intra-aneurismal hemodynamics. J. Biomech. 41:241–248, 2008.

    Article  PubMed  Google Scholar 

  38. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.

    Article  PubMed  Google Scholar 

  39. Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24:1586–1592, 2005.

    Article  PubMed  Google Scholar 

  40. Ford, M. D., Y. J. Xie, B. A. Wasserman, and D. A. Steinman. Is flow in the common carotid artery fully developed? Physiol. Meas. 29:1335–1349, 2008.

    Article  PubMed  Google Scholar 

  41. Förster, C., W. A. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Meth. Appl. Mech. Eng. 196:1278–1293, 2007.

    Article  Google Scholar 

  42. Friedman, M. H., H. A. Himburg, and J. A. LaMack. Statistical hemodynamics: a tool for evaluating the effect of fluid dynamic forces on vascular biology in vivo. J. Biomech. Eng. 128:965–968, 2006.

    Article  PubMed  Google Scholar 

  43. Frydrychowicz, A., A. Berger, M. F. Russe, A. F. Stalder, A. Harloff, S. Dittrich, J. Hennig, M. Langer, and M. Markl. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 tesla for blood flow and wall shear stress analysis. J. Thorac. Cardiovasc. Surg. 136:400–407, 2008.

    Article  PubMed  Google Scholar 

  44. Gerbeau, J.-F., M. Vidrascu, and P. Frey. Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83:155–165, 2005.

    Article  Google Scholar 

  45. Gijsen, F. J., J. J. Wentzel, A. Thury, B. Lamers, J. C. Schuurbiers, P. W. Serruys, and A. F. van der Steen. A new imaging technique to study 3-d plaque and shear stress distribution in human coronary artery bifurcations in vivo. J. Biomech. 40:2349–2357, 2007.

    Article  PubMed  Google Scholar 

  46. Gijsen, F. J., J. J. Wentzel, A. Thury, F. Mastik, J. A. Schaar, J. C. Schuurbiers, C. J. Slager, W. J. van der Giessen, P. J. de Feyter, A. F. van der Steen, and P. W. Serruys. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295:H1608–H1614, 2008.

    Article  CAS  PubMed  Google Scholar 

  47. Glor, F. P., B. Ariff, A. D. Hughes, L. A. Crowe, P. R. Verdonck, D. C. Barratt, G. T. S. A. Mc, D. N. Firmin, and X. Y. Xu. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25:1495–1509, 2004.

    Article  CAS  PubMed  Google Scholar 

  48. Glor, F. P., B. Ariff, A. D. Hughes, P. R. Verdonck, D. C. Barratt, A. D. Augst, S. A. Thom, and X. Y. Xu. Influence of head position on carotid hemodynamics in young adults. Am. J. Physiol. Heart Circ. Physiol. 287:H1670–H1681, 2004.

    Article  CAS  PubMed  Google Scholar 

  49. Glor, F. P., B. Ariff, A. D. Hughes, P. R. Verdonck, S. A. Thom, D. C. Barratt, and X. Y. Xu. Operator dependence of 3-d ultrasound-based computational fluid dynamics for the carotid bifurcation. IEEE Trans. Med. Imaging 24:451–456, 2005.

    Article  PubMed  Google Scholar 

  50. Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31:142–151, 2003.

    Article  CAS  PubMed  Google Scholar 

  51. Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. Groen, H. C., F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van der Steen, C. Yuan, and J. J. Wentzel. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38:2379–2381, 2007.

    Article  PubMed  Google Scholar 

  53. Harloff, A., F. Albrecht, J. Spreer, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Schollhorn, A. Hetzel, M. Schumacher, J. Hennig, and M. Markl. 3d blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4d MRI at 3T. Magn. Reson. Med. 61:65–74, 2009.

    Article  CAS  PubMed  Google Scholar 

  54. Hassan, T., M. Ezura, E. V. Timofeev, T. Tominaga, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am. J. Neuroradiol. 25:63–68, 2004.

    PubMed  Google Scholar 

  55. Hassan, T., E. V. Timofeev, M. Ezura, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Hemodynamic analysis of an adult vein of Galen aneurysm malformation by use of 3d image-based computational fluid dynamics. AJNR Am. J. Neuroradiol. 24:1075–1082, 2003.

    PubMed  Google Scholar 

  56. Himburg, H. A., S. E. Dowd, and M. H. Friedman. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H645–H653, 2007.

    Article  CAS  PubMed  Google Scholar 

  57. Himburg, H. A., and M. H. Friedman. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J. Biomech. Eng. 128:852–856, 2006.

    Article  PubMed  Google Scholar 

  58. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  59. Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29:1297–1308, 1996.

    Article  CAS  PubMed  Google Scholar 

  60. Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128:844–851, 2006.

    Article  PubMed  Google Scholar 

  61. Hope, M. D., D. D. Purcell, T. A. Hope, C. von Morze, D. B. Vigneron, M. T. Alley, and W. P. Dillon. Complete intracranial arterial and venous blood flow evaluation with 4d flow MR imaging. AJNR Am. J. Neuroradiol. 30:362–366, 2009.

    Article  CAS  PubMed  Google Scholar 

  62. Hope, T. A., M. Markl, L. Wigstrom, M. T. Alley, D. C. Miller, and R. J. Herfkens. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26:1471–1479, 2007.

    Article  PubMed  Google Scholar 

  63. Howell, B. A., T. Kim, A. Cheer, H. Dwyer, D. Saloner, and T. A. Chuter. Computational fluid dynamics within bifurcated abdominal aortic stent-grafts. J. Endovasc. Ther. 14:138–143, 2007.

    Article  PubMed  Google Scholar 

  64. http://www.itk.org. Accessed on March 22, 2009.

  65. http://www.simtk.org. Accessed on March 22, 2009.

  66. http://www.vmtk.org. Accessed on March 22, 2009.

  67. http://www.vtk.org. Accessed on March 22, 2009.

  68. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.

    Article  CAS  PubMed  Google Scholar 

  69. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  CAS  PubMed  Google Scholar 

  70. Ideker, T., T. Galitski, and L. Hood. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2:343–372, 2001.

    Article  CAS  PubMed  Google Scholar 

  71. Jou, L. D., C. M. Quick, W. L. Young, M. T. Lawton, R. Higashida, A. Martin, and D. Saloner. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am. J. Neuroradiol. 24:1804–1810, 2003.

    PubMed  Google Scholar 

  72. Jou, L. D., G. Wong, B. Dispensa, M. T. Lawton, R. T. Higashida, W. L. Young, and D. Saloner. Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am. J. Neuroradiol. 26:2357–2363, 2005.

    PubMed  Google Scholar 

  73. Kadirvel, R., Y. H. Ding, D. Dai, H. Zakaria, A. M. Robertson, M. A. Danielson, D. A. Lewis, H. J. Cloft, and D. F. Kallmes. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49:1041–1053, 2007.

    Article  PubMed  Google Scholar 

  74. Kakalis, N. M., A. P. Mitsos, J. V. Byrne, and Y. Ventikos. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans. Med. Imaging 27:814–824, 2008.

    Article  PubMed  Google Scholar 

  75. Kassab, G. S. Scaling laws of vascular trees: of form and function. Am. J. Physiol. Heart Circ. Physiol. 290:H894–H903, 2006.

    Article  CAS  PubMed  Google Scholar 

  76. Kim, T., A. Y. Cheer, and H. A. Dwyer. A simulated dye method for flow visualization with a computational model for blood flow. J. Biomech. 37:1125–1136, 2004.

    Article  CAS  PubMed  Google Scholar 

  77. Kleinstreuer, C., S. Hyun, J. R. Buchanan, Jr., P. W. Longest, J. P. Archie, Jr., and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    CAS  PubMed  Google Scholar 

  78. Kleinstreuer, C., Z. Li, and M. A. Farber. Fluid–structure interaction analyses of stented abdominal aortic aneurysms. Annu. Rev. Biomed. Eng. 9:169–204, 2007.

    Article  CAS  PubMed  Google Scholar 

  79. Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3d geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3d reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17:2061–2065, 1997.

    CAS  PubMed  Google Scholar 

  80. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33:257–269, 2005.

    Article  PubMed  Google Scholar 

  81. LaDisa, Jr., J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.

    Article  PubMed  Google Scholar 

  82. Lagana, K., R. Balossino, F. Migliavacca, G. Pennati, E. L. Bove, M. R. de Leval, and G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38:1129–1141, 2005.

    Article  PubMed  Google Scholar 

  83. LaMack, J. A., H. A. Himburg, X. M. Li, and M. H. Friedman. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann. Biomed. Eng. 33:457–464, 2005.

    Article  PubMed  Google Scholar 

  84. Lee, S. E., S. W. Lee, P. F. Fischer, H. S. Bassiouny, and F. Loth. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J. Biomech. 41:2551–2561, 2008.

    Article  PubMed  Google Scholar 

  85. Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347, 2008.

    Article  PubMed  Google Scholar 

  86. Lee, S. W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131:061013, 2009.

    Article  PubMed  Google Scholar 

  87. Lee, S.-W., D. S. Smith, F. Loth, P. F. Fischer, and H. S. Bassiouny. Numerical and experimental simulation of transitional flow in a blood vessel junction. Numer. Heat Transf. A-Appl. 51:1–22, 2007.

    Article  Google Scholar 

  88. Lee, S. W., and D. A. Steinman. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129:273–278, 2007.

    Article  PubMed  Google Scholar 

  89. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng., In press.

  90. Leuprecht, A., K. Perktold, M. Prosi, T. Berk, W. Trubel, and H. Schima. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35:225–236, 2002.

    Article  PubMed  Google Scholar 

  91. Li, Z. H., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27:369–382, 2005.

    Article  PubMed  Google Scholar 

  92. Löhner, R., J. R. Cebral, F. E. Camelli, S. Appanaboyina, J. D. Baum, E. L. Mestreau, and O. A. Soto. Adaptive embedded and immersed unstructured grid techniques. Comput. Meth. Appl. Mech. Eng. 197:2173–2197, 2008.

    Article  Google Scholar 

  93. Lundstrom, C., P. Ljung, A. Persson, and A. Ynnerman. Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans. Vis. Comput. Graph. 13:1648–1655, 2007.

    Article  PubMed  Google Scholar 

  94. Markl, M., F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker, C. A. Taylor, R. J. Herfkens, and N. J. Pelc. Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 17:499–506, 2003.

    Article  PubMed  Google Scholar 

  95. Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137:394–403, 2009.

    Article  PubMed  Google Scholar 

  96. Marsden, A. L., J. A. Feinstein, and C. A. Taylor. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Meth. Appl. Mech. Eng. 197:1890–1905, 2008.

    Article  Google Scholar 

  97. Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35:250–263, 2007.

    Article  PubMed  Google Scholar 

  98. Meckel, S., A. F. Stalder, F. Santini, E. W. Radu, D. A. Rufenacht, M. Markl, and S. G. Wetzel. In vivo visualization and analysis of 3-d hemodynamics in cerebral aneurysms with flow-sensitized 4-d MR imaging at 3T. Neuroradiology. 50:473–484, 2008.

    Article  PubMed  Google Scholar 

  99. Meng, H., D. D. Swartz, Z. Wang, Y. Hoi, J. Kolega, E. M. Metaxa, M. P. Szymanski, J. Yamamoto, E. Sauvageau, and E. I. Levy. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59:1094–1100, 2006 (discussion 1100-1).

    Article  PubMed  Google Scholar 

  100. Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39:1010–1020, 2006.

    Article  PubMed  Google Scholar 

  101. Migliavacca, F., M. R. de Leval, G. Dubini, and R. Pietrabissa. A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J. Biomech. Eng. 118:520–528, 1996.

    Article  CAS  PubMed  Google Scholar 

  102. Migliavacca, F., M. R. de Leval, G. Dubini, R. Pietrabissa, and R. Fumero. Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med. Eng. Phys. 21:187–193, 1999.

    Article  CAS  PubMed  Google Scholar 

  103. Migliavacca, F., G. Dubini, G. Pennati, R. Pietrabissa, R. Fumero, T.-Y. Hsia, and M. R. de Leval. Computational model of the fluid dynamics in systemic-to-pulmonary shunts. J. Biomech. 33:549–557, 2000.

    Article  CAS  PubMed  Google Scholar 

  104. Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28:143–156, 1998.

    Article  CAS  PubMed  Google Scholar 

  105. Mistretta, C. A. Undersampled radial mr acquisition and highly constrained back projection (hypr) reconstruction: potential medical imaging applications in the post-nyquist era. J. Magn. Reson. Imaging 29:501–516, 2009.

    Article  PubMed  Google Scholar 

  106. Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40:519–534, 2007.

    Article  PubMed  Google Scholar 

  107. Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128:371–379, 2006.

    Article  PubMed  Google Scholar 

  108. Müller, J., O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Anisotropic adaptive finite element method for modelling blood flow. Comput. Meth. Appl. Mech. Eng. 8:295–305, 2005.

    Google Scholar 

  109. Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268, 1999.

    CAS  PubMed  Google Scholar 

  110. Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. de Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med. Biol. Eng. Comput. 46:1139–1152, 2008.

    Article  PubMed  Google Scholar 

  111. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  CAS  PubMed  Google Scholar 

  112. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3d computational hemodynamics. J. Biomech. Eng. 123:134–144, 2001.

    Article  CAS  PubMed  Google Scholar 

  113. Prosi, M., K. Perktold, Z. H. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.

    Article  PubMed  Google Scholar 

  114. Radaelli, A. G., L. Augsburger, J. R. Cebral, M. Ohta, D. A. Rufenacht, R. Balossino, G. Benndorf, D. R. Hose, A. Marzo, R. Metcalfe, P. Mortier, F. Mut, P. Reymond, L. Socci, B. Verhegghe, and A. F. Frangi. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the virtual intracranial stenting challenge 2007. J. Biomech. 41:2069–2081, 2008.

    Article  CAS  PubMed  Google Scholar 

  115. Rafii, B. Y., O. J. Abilez, P. Benharash, and C. K. Zarins. Lateral movement of endografts within the aneurysm sac is an indicator of stent-graft instability. J. Endovasc. Ther. 15:335–343, 2008.

    Article  PubMed  Google Scholar 

  116. Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130:051011, 2008.

    Article  PubMed  Google Scholar 

  117. Rayz, V. L., L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida, and D. Saloner. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36:1793–1804, 2008.

    Article  CAS  PubMed  Google Scholar 

  118. Roache, P. J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa Publishers, p. 446, 1998.

    Google Scholar 

  119. Ryval, J., A. G. Straatman, and D. A. Steinman. Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126:625–635, 2004.

    Article  CAS  PubMed  Google Scholar 

  120. Sahni, O., K. E. Jansen, M. S. Shephard, C. A. Taylor, and M. W. Beall. Adaptive boundary layer meshing for viscous flow simulations. Eng. Comput. 24:267–285, 2008.

    Article  Google Scholar 

  121. Sahni, O., K. E. Jansen, C. A. Taylor, and M. S. Shephard. Automated adaptive cardiovascular flow simulations. Eng. Comput. 25:25–36, 2009.

    Article  Google Scholar 

  122. Sahni, O., J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Meth. Appl. Mech. Eng. 195:5634–5655, 2006.

    Article  Google Scholar 

  123. Schmidt, J. P., S. L. Delp, M. A. Sherman, C. A. Taylor, V. S. Pande, and R. B. Altman. The simbios national center: systems biology in motion. Proc. IEEE 96:1266–1280, 2008.

    Article  CAS  Google Scholar 

  124. Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.

    Article  PubMed  Google Scholar 

  125. Shadden, S. C., and C. A. Taylor. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36:1152–1162, 2008.

    Article  PubMed  Google Scholar 

  126. Sharma, S., S. Goudy, P. Walker, S. Panchal, A. Ensley, K. Kanter, V. Tam, D. Fyfe, and A. Yoganathan. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J. Am. Coll. Cardiol. 27:1264–1269, 1996.

    Article  CAS  PubMed  Google Scholar 

  127. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.

    Article  PubMed  Google Scholar 

  128. Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.

    Article  PubMed  Google Scholar 

  129. Slager, C. J., J. J. Wentzel, F. J. Gijsen, A. Thury, A. C. van der Wal, J. A. Schaar, and P. W. Serruys. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med. 2:456–464, 2005.

    Article  CAS  PubMed  Google Scholar 

  130. Slager, C. J., J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys, and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516, 2000.

    CAS  PubMed  Google Scholar 

  131. Spilker, R. L., J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35:546–559, 2007.

    Article  PubMed  Google Scholar 

  132. Spilker, R. L., and C. A. Taylor. Incorporating physiological measurements in image-based hemodynamic simulations. In: Fifth International Biofluids Symposium and Workshop, Pasadena, CA, 2008.

  133. Steele, B. N., M. S. Olufsen, and C. A. Taylor. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Meth. Biomech. Biomed. Eng. 10:39–51, 2007.

    Article  Google Scholar 

  134. Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.

    Article  PubMed  Google Scholar 

  135. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24:559–566, 2003.

    PubMed  Google Scholar 

  136. Steinman, D. A., and C. A. Taylor. Flow imaging and computing: large artery hemodynamics. Ann. Biomed. Eng. 33:1704–1709, 2005.

    Article  PubMed  Google Scholar 

  137. Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47:149–159, 2002.

    Article  PubMed  Google Scholar 

  138. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, O. J. Ilegbusi, Y. Yeghiazarians, J. J. Popma, J. Orav, R. E. Kuntz, and C. L. Feldman. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 108:438–444, 2003.

    Article  PubMed  Google Scholar 

  139. Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338:1360–1361, 1991.

    Article  CAS  PubMed  Google Scholar 

  140. Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126:382–387, 2004.

    Article  PubMed  Google Scholar 

  141. Suo, J., D. E. Ferrara, D. Sorescu, R. E. Guldberg, W. R. Taylor, and D. P. Giddens. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27:346–351, 2007.

    Article  CAS  PubMed  Google Scholar 

  142. Tambasco, M., and D. A. Steinman. On assessing the quality of particle tracking through computational fluid dynamic models. J. Biomech. Eng. 124:166–175, 2002.

    Article  PubMed  Google Scholar 

  143. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.

    Article  CAS  PubMed  Google Scholar 

  144. Tang, D., C. Yang, S. Mondal, F. Liu, G. Canton, T. S. Hatsukami, and C. Yuan. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2d/3d FSI models. J. Biomech. 41:727–736, 2008.

    Article  PubMed  Google Scholar 

  145. Taylor, C. A., and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36:197–231, 2004.

    Article  Google Scholar 

  146. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4:231–247, 1999.

    Article  CAS  PubMed  Google Scholar 

  147. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Computational investigations in vascular disease. Comput. Phys. 10:224–232, 1996.

    Google Scholar 

  148. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Meth. Appl. Mech. Eng. 158:155–196, 1998.

    Article  Google Scholar 

  149. Tezduyar, T. E., S. Sathe, M. Schwaab, and B. S. Conklin. Arterial fluid mechanics modeling with the stabilized space-time fluid–structure interaction technique. Int. J. Numer. Meth. Fluids 57:601–629, 2008.

    Article  CAS  Google Scholar 

  150. Thomas, J. B., J. S. Milner, B. K. Rutt, and D. A. Steinman. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31:132–141, 2003.

    Article  PubMed  Google Scholar 

  151. Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput. Mech. 43:151–159, 2008.

    Article  Google Scholar 

  152. Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. P. Francis, J. Mayet, G. Z. Yang, S. A. Thom, and X. Y. Xu. Stress phase angle depicts differences in coronary artery hemodynamics due to changes in flow and geometry after percutaneous coronary intervention. Am. J. Physiol. Heart Circ. Physiol. 296:H765–H776, 2009.

    Article  CAS  PubMed  Google Scholar 

  153. Vermeersch, S. J., E. R. Rietzschel, M. L. De Buyzere, D. De Bacquer, G. De Backer, L. M. Van Bortel, T. C. Gillebert, P. R. Verdonck, and P. Segers. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiol. Meas. 29:1267–1280, 2008.

    Article  CAS  PubMed  Google Scholar 

  154. Vignon-Clementel, I. E., C. A. Figueroa, K. C. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Meth. Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  Google Scholar 

  155. Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131:021013, 2009.

    Article  PubMed  Google Scholar 

  156. Wang, K. C., R. W. Dutton, and C. A. Taylor. Improving geometric model construction for blood flow modeling. Eng. Med. Biol. 18:33–39, 1999.

    Article  CAS  Google Scholar 

  157. Weinberg, P. D., and C. Ross Ethier. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J. Biomech. 40:1594–1598, 2007.

    Article  PubMed  Google Scholar 

  158. Wellnhofer, E., L. Goubergrits, U. Kertzscher, K. Affeld, and E. Fleck. Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients. Atherosclerosis 202:483–490, 2009.

    Article  CAS  PubMed  Google Scholar 

  159. Wentzel, J. J., F. J. Gijsen, J. C. Schuurbiers, R. Krams, P. W. Serruys, P. J. De Feyter, and C. J. Slager. Geometry guided data averaging enables the interpretation of shear stress related plaque development in human coronary arteries. J. Biomech. 38:1551–1555, 2005.

    Article  PubMed  Google Scholar 

  160. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.

    Article  PubMed  Google Scholar 

  161. Wilson, N. M., F. R. Arko, and C. A. Taylor. Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Comput. Aided Surg. 10:257–277, 2005.

    Article  PubMed  Google Scholar 

  162. Wolters, B., M. C. M. Rutten, G. W. H. Schurink, U. Kose, J. de Hart, and F. N. van de Vosse. A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27:871–883, 2005.

    Article  CAS  PubMed  Google Scholar 

  163. Womersley, J. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    CAS  PubMed  Google Scholar 

  164. Womersley, J. R. Oscillatory motion of a viscous liquid in a thin-walled elastic tube. I. The linear approximation for long waves. Philos. Mag. 7:199–221, 1955.

    Google Scholar 

  165. Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101:1412–1418, 2006.

    Article  CAS  PubMed  Google Scholar 

  166. Yamashita, S., H. Isoda, M. Hirano, H. Takeda, S. Inagawa, Y. Takehara, M. T. Alley, M. Markl, N. J. Pelc, and H. Sakahara. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 25:473–478, 2007.

    Article  PubMed  Google Scholar 

  167. Yeung, J. J., H. J. Kim, T. A. Abbruzzese, I. E. Vignon-Clementel, M. T. Draney-Blomme, K. K. Yeung, I. Perkash, R. J. Herfkens, C. A. Taylor, and R. L. Dalman. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. J. Vasc. Surg. 44:1254–1265, 2006.

    Article  PubMed  Google Scholar 

  168. Young, H. K., P. G. Walker, A. A. Fontaine, S. Panchal, A. E. Ensley, J. Oshinski, S. Sharma, B. Ha, C. L. Lucas, and A. P. Yoganathan. Hemodynamics of the Fontan connection: an in-vitro study. J. Biomech. Eng. 117:423–428, 1995.

    Article  Google Scholar 

  169. Younis, H. F., M. R. Kaazempur-Mofrad, R. C. Chan, A. G. Isasi, D. P. Hinton, A. H. Chau, L. A. Kim, and R. D. Kamm. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3:17–32, 2004.

    Article  CAS  PubMed  Google Scholar 

  170. Zarins, C. K., and C. A. Taylor. Endovascular device design in the future: transformation from trial and error to computational design. J. Endovasc. Ther. 16:I-12–21, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This review is based on material presented at the International Biofluids Symposium and Workshop, Pasadena, CA, March 28–30, 2008. Taylor’s research on which this work is based has been supported, in part, by grants from the National Science Foundation (ITR-0205741) and the National Institutes of Health through the NIH Roadmap for Medical Research Grant U54 GM072970. Information on the National Centers for Biomedical Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics. Steinman’s work on image-based modeling has been supported by a Career Investigator Award from the Heart & Stroke Foundation, as well as by grants from that agency and from the Canadian Institutes of Health Research. The invaluable contributions from our many collaborators, staff, trainees and study volunteers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, C.A., Steinman, D.A. Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions. Ann Biomed Eng 38, 1188–1203 (2010). https://doi.org/10.1007/s10439-010-9901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9901-0

Keywords

Navigation