Skip to main content
Log in

A Multilead Scheme Based on Periodic Component Analysis for T-Wave Alternans Analysis in the ECG

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

T-wave alternans (TWA) is a cardiac phenomenon that appears in the electrocardiogram (ECG) and is associated with the mechanisms leading to sudden cardiac death (SCD). In this study, we propose the use of a multilead TWA analysis scheme that combines the Laplacian likelihood ratio (LLR) method and periodic component analysis (πCA), an eigenvalue decomposition technique whose aim is to extract the most periodic sources of the signal. The proposed scheme is evaluated in different scenarios—from synthetic signals to stress test ECGs—and is compared to other reported schemes based on the LLR method. Results demonstrate that the πCA-based scheme provides a superior ability to detect TWA than previously reported schemes, and has the potential to improve the prognostic value of testing for TWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bailón, R., J. Mateo, S. Olmos, P. Serrano, J. García, A. del Río, I. J. Ferreira, and P. Laguna. Coronary artery disease diagnosis based on exercise electrocardiogram indexes from repolarisation, depolarisation and heart rate variability. Med. Biol. Eng. Comput. 41(5):561–571, 2003

    Article  PubMed  Google Scholar 

  2. Bloomfield, D. M., S. H. Hohnloser, and R. J. Cohen. Interpretation and classification of microvolt T wave alternans tests. J. Cardiovasc. Electrophysiol. 13(5):502–512, 2002

    Article  PubMed  Google Scholar 

  3. Chow, T., D. J. Kereiakes, C. Bartone, T. Booth, E. J. Schloss, T. Waller, E. S. Chung, S. Menon, B. K. Nallamothu, and P. S. Chan. Prognostic utility of microvolt T-wave alternans in risk stratification of patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol. 47(9):1820–1827, 2006

    Article  PubMed  Google Scholar 

  4. Clifford, G. D., F. Azuaje, and P. McSharry. Advanced Methods and Tools for ECG Data Analysis. Norwood, MA: Artech House, Inc., 2006

    Google Scholar 

  5. Clifford, G. D., S. Nemati, and R. Sameni. An artificial multi-channel model for generating abnormal electrocardiographic rhythms. Physiol. Meas. 31(5):595–609, 2010

    Article  PubMed  Google Scholar 

  6. Costantini, O., S. H. Hohnloser, M. M. Kirk, B. B. Lerman, J. H. Baker, B. Sethuraman, M. M. Dettmer, and D. S. Rosenbaum; ABCD Trial Investigators. The ABCD (Alternans Before Cardioverter Defibrillator) trial: Strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J. Am. Coll. Cardiol. 53(6):471–479, 2009

    Google Scholar 

  7. Cutler, M. J., and D. S. Rosenbaum. Explaining the clinical manifestations of T wave alternans in patients at risk for sudden cardiac death. Heart Rhythm 6(3 Suppl 1):S22–S28, 2009

    Article  PubMed  Google Scholar 

  8. de Vilhena Garcia, E., N. Samesima, H. G. P. Filho, C. M. Quadros, L. T. C. da Silva, M. M. Filho, M. L. Z. Hannouche, W. Mathias, and C. A. Pastore. Comparison of quantitative T-wave alternans profiles of healthy subjects and ICD patients. Ann. Noninvasive Electrocardiol. 14(2):108–118, 2009

    Article  PubMed  Google Scholar 

  9. Klingenheben, T., P. Ptaszynski, and S. H. Hohnloser. Quantitative assessment of microvolt T-wave alternans in patients with congestive heart failure. J. Cardiovasc. Electrophysiol. 16(6):620–624, 2005

    Article  PubMed  Google Scholar 

  10. Martínez, J. P., R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna. A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4):570–581, 2004

    Article  PubMed  Google Scholar 

  11. Martínez, J. P., and S. Olmos. Detection of T wave alternans in nonstationary noise: A GLRT approach. In: 30th Ann. Conf. Computers in Cardiology. Piscataway, NJ: IEEE Comp. Soc. Press, 2003, pp. 161–164

    Article  Google Scholar 

  12. Martínez, J. P., and S. Olmos. Methodological principles of T wave alternans analysis: A unified framework. IEEE Trans. Biomed. Eng. 52:599–613, 2005

    Article  PubMed  Google Scholar 

  13. Martínez, J. P., S. Olmos, G. Wagner, and P. Laguna. Characterization of repolarization alternans during ischemia: Time-course and spatial analysis. IEEE Trans. Biomed. Eng. 53:701–711, 2006

    Article  PubMed  Google Scholar 

  14. Meyer, C. R., and H. N. Keiser. Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput. Biomed. Res. 10(5):459–470, 1977

    Article  CAS  PubMed  Google Scholar 

  15. Minkkinen, M., M. Kähönen, J. Viik, K. Nikus, T. Lehtimäki, R. Lehtinen, T. Kööbi, V. Turjanmaa, W. Kaiser, R. L. Verrier, and T. Nieminen. Enhanced predictive power of quantitative TWA during routine exercise testing in the Finnish cardiovascular study. J. Cardiovasc. Electrophysiol. 20(4):408–415, 2009

    Article  PubMed  Google Scholar 

  16. Monasterio, V., P. Laguna, and J. P. Martínez. Multilead analysis of T-wave alternans in the ECG using principal component analysis. IEEE Trans. Biomed. Eng. 57(7):1880–1890, 2009

    Article  Google Scholar 

  17. Moody, G. B. The Physionet/Computers in Cardiology Challenge 2008: T-wave alternans. In: Proc. Computers in Cardiology, pp. 505–508, 2008

  18. Moody, G. B., W. Muldrow, and R. G. Mark. A noise stress test for arrhythmia detectors. In: Computers in Cardiology, vol. 11. Piscataway, NJ: IEEE Comp. Soc. Press, 1984, pp. 381–384

  19. Narayan, S. M. T-wave alternans and the susceptibility to ventricular arrhythmias. J. Am. Coll. Cardiol. 47(2):269–281, 2006

    Article  PubMed  Google Scholar 

  20. Nearing, B. D., A. H. Huang, and R. L. Verrier. Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004):437–440, 1991

    Article  CAS  PubMed  Google Scholar 

  21. Nearing, B. D., P. H. Stone, and R. L. Verrier. Frequency response characteristics required for detection of T-wave alternans during ambulatory ECG monitoring. Ann. Noninvasive Electrocardiol. 1:103–112, 1996

    Article  Google Scholar 

  22. Nearing, B. D., and R. L. Verrier. Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with great accuracy. J. Appl. Physiol. 92(2):541–549, 2002

    PubMed  Google Scholar 

  23. Rosenbaum, D. S., L. E. Jackson, J. M. Smith, H. Garan, J. N. Ruskin, and R. J. Cohen. Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330(4):235–241, 1994

    Article  CAS  PubMed  Google Scholar 

  24. Sameni, R., C. Jutten, and M. B. Shamsollahi. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8):1935–1940, 2008

    Article  PubMed  Google Scholar 

  25. Saul, L. K., and J. B. Allen. Periodic component analysis: An eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing System. Cambridge, MA: MIT Press, 2000, pp. 807–813

  26. Smith, J. M., E. A. Clancy, C. R. Valeri, J. N. Ruskin, and R. J. Cohen. Electrical alternans and cardiac electrical instability. Circulation 77(1):110–121, 1988

    CAS  PubMed  Google Scholar 

  27. Turitto, G., E. B. Caref, G. El-Attar, M. Helal, A. Mohamed, R. P. Pedalino,and N. El-Sherif. Optimal target heart rate for exercise-induced T-wave alternans. Ann. Noninvasive Electrocardiol. 6(2):123–128, 2001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CIBER de Bioingeniería, Biomateriales y Nanomedicina through Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional, by Project TEC-2007-68076-C02-02 from CICYT, and by Grupo Consolidado GTC from DGA (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Monasterio.

Additional information

Associate Editor Leonidas D. Iasemidis oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monasterio, V., Clifford, G.D., Laguna, P. et al. A Multilead Scheme Based on Periodic Component Analysis for T-Wave Alternans Analysis in the ECG. Ann Biomed Eng 38, 2532–2541 (2010). https://doi.org/10.1007/s10439-010-0029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0029-z

Keywords

Navigation