Skip to main content
Log in

Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review

  • Invasive Electrophysiology and Pacing (EK Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Artificial intelligence (AI) is transforming electrocardiography (ECG) interpretation. AI diagnostics can reach beyond human capabilities, facilitate automated access to nuanced ECG interpretation, and expand the scope of cardiovascular screening in the population. AI can be applied to the standard 12-lead resting ECG and single-lead ECGs in external monitors, implantable devices, and direct-to-consumer smart devices. We summarize the current state of the literature on AI-ECG.

Recent Findings

Rhythm classification was the first application of AI-ECG. Subsequently, AI-ECG models have been developed for screening structural heart disease including hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, pulmonary hypertension, and left ventricular systolic dysfunction. Further, AI models can predict future events like development of systolic heart failure and atrial fibrillation. AI-ECG exhibits potential in acute cardiac events and non-cardiac applications, including acute pulmonary embolism, electrolyte abnormalities, monitoring drugs therapy, sleep apnea, and predicting all-cause mortality.

Summary

Many AI models in the domain of cardiac monitors and smart watches have received Food and Drug Administration (FDA) clearance for rhythm classification, while others for identification of cardiac amyloidosis, pulmonary hypertension and left ventricular dysfunction have received breakthrough device designation. As AI-ECG models continue to be developed, in addition to regulatory oversight and monetization challenges, thoughtful clinical implementation to streamline workflows, avoiding information overload and overwhelming of healthcare systems with false positive results is necessary. Research to demonstrate and validate improvement in healthcare efficiency and improved patient outcomes would be required before widespread adoption of any AI-ECG model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ranka S, Reddy M, Noheria A. Artificial intelligence in cardiovascular medicine. Curr Opin Cardiol. 2021;36:26–35. https://doi.org/10.1097/HCO.0000000000000812.

    Article  PubMed  Google Scholar 

  2. Martinez-Selles M, Marina-Breysse M. Current and Future Use of Artificial Intelligence in Electrocardiography. J Cardiovasc Dev Dis. 2023;10. https://doi.org/10.3390/jcdd10040175.

  3. •• Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25:65–9. https://doi.org/10.1038/s41591-018-0268-3. These authors set afire the frenzy in AI-ECG interpretation with this seminal work on rhythm classification from ambulatory single-lead ECGs. This paper discusses the success of AI-ECG for rhythm classification, and is a benchmark for any new publications in this space.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019;381:1909–17. https://doi.org/10.1056/NEJMoa1901183.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mehta S, Avila J, Villagran C, Fernandez F, Niklitschek S, Vera F, Rocuant R, Cardenas G, Frauenfelder A, Vieira D, et al. Artificial intelligence methodology: multi-label classification of abnormal EKG records. Eur Heart J. 2020;41:3450–3450. https://doi.org/10.1093/ehjci/ehaa946.3450.

    Article  Google Scholar 

  6. Kashou AH, Ko WY, Attia ZI, Cohen MS, Friedman PA, Noseworthy PA. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program. Cardiovasc Digit Health J. 2020;1:62–70. https://doi.org/10.1016/j.cvdhj.2020.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas. 2018;39:094006. https://doi.org/10.1088/1361-6579/aad9ed.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kamaleswaran R, Mahajan R, Akbilgic O. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length. Physiol Meas. 2018;39:035006. https://doi.org/10.1088/1361-6579/aaaa9d.

    Article  PubMed  Google Scholar 

  9. Acharya UR, Fujita H, Lih OS, Hagiwara Y, Tan JH, Adam M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci. 2017;405:81–90. https://doi.org/10.1016/j.ins.2017.04.012.

    Article  Google Scholar 

  10. Ribeiro AH, Ribeiro MH, Paixao GMM, Oliveira DM, Gomes PR, Canazart JA, Ferreira MPS, Andersson CR, Macfarlane PW, Meira W Jr, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11:1760. https://doi.org/10.1038/s41467-020-15432-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mousavi S, Afghah F, Acharya UR. HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention networks. Comput Biol Med. 2020;127:104057. https://doi.org/10.1016/j.compbiomed.2020.104057.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati T, Jing L, vanMaanen DP, Hartzel DN, Ruhl JA, Lagerman BF, et al. Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation-Related Stroke. Circulation. 2021;143:1287–98. https://doi.org/10.1161/CIRCULATIONAHA.120.047829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394:861–7. https://doi.org/10.1016/S0140-6736(19)31721-0.

    Article  PubMed  Google Scholar 

  14. Using Apple Watch for Arrhythmia Detection. https://www.apple.com/healthcare/docs/site/Apple_Watch_Arrhythmia_Detection.pdf. Accessed Feb. 20.

  15. Fairbank T, DeBauge A, Harvey CJ, Jiwani S, Ranka S, Beaver TA, Sheldon SH, Reddy M, Noheria A. Electrocardiographic Z-axis QRS-T voltage-time-integral in patients with typical right bundle branch block - Correlation with echocardiographic right ventricular size and function. J Electrocardiol. 2024;82:73–9. https://doi.org/10.1016/j.jelectrocard.2023.11.004.

    Article  PubMed  Google Scholar 

  16. DeBauge A, Fairbank T, Harvey CJ, Ranka S, Jiwani S, Sheldon SH, Reddy M, Beaver TA, Noheria A. Electrocardiographic prediction of left ventricular hypertrophy in women and men with left bundle branch block - Comparison of QRS duration, amplitude and voltage-time-integral. J Electrocardiol. 2023;80:34–9. https://doi.org/10.1016/j.jelectrocard.2023.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elias P, Poterucha TJ, Rajaram V, Moller LM, Rodriguez V, Bhave S, Hahn RT, Tison G, Abreau SA, Barrios J, et al. Deep Learning Electrocardiographic Analysis for Detection of Left-Sided Valvular Heart Disease. J Am Coll Cardiol. 2022;80:613–26. https://doi.org/10.1016/j.jacc.2022.05.029.

    Article  PubMed  Google Scholar 

  18. Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko WY, Murphree DH, Michelena HI, Enriquez-Sarano M, Carter RE, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J. 2021;42:2885–96. https://doi.org/10.1093/eurheartj/ehab153.

    Article  PubMed  Google Scholar 

  19. Kwon JM, Lee SY, Jeon KH, Lee Y, Kim KH, Park J, Oh BH, Lee MM. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020;9:e014717. https://doi.org/10.1161/JAHA.119.014717.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang PS, Tseng YH, Tsai CF, Chen JJ, Yang SC, Chiu FC, Chen ZW, Hwang JJ, Chuang EY, Wang YC, Tsai CT. An Artificial Intelligence-Enabled ECG Algorithm for the Prediction and Localization of Angiography-Proven Coronary Artery Disease. Biomedicines. 2022;10. https://doi.org/10.3390/biomedicines10020394.

  21. Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, Demuth SJ, Ackerman MJ, Gersh BJ, Arruda-Olson AM, et al. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol. 2020;75:722–33. https://doi.org/10.1016/j.jacc.2019.12.030.

    Article  PubMed  Google Scholar 

  22. Siontis KC, Liu K, Bos JM, Attia ZI, Cohen-Shelly M, Arruda-Olson AM, Zanjirani Farahani N, Friedman PA, Noseworthy PA, Ackerman MJ. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. Int J Cardiol. 2021;340:42–7. https://doi.org/10.1016/j.ijcard.2021.08.026.

    Article  PubMed  Google Scholar 

  23. Sangha V, Dhingra LS, Oikonomou E, Aminorroaya A, Sikand NV, Sen S, Krumholz HM, Khera R. Identification of Hypertrophic Cardiomyopathy on Electrocardiographic Images with Deep Learning. medRxiv. 2023. https://doi.org/10.1101/2023.12.23.23300490.

  24. Lee Y, Choi B, Lee MS, Jin U, Yoon S, Jo YY, Kwon JM. An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period. Int J Cardiol. 2022;352:72–7. https://doi.org/10.1016/j.ijcard.2022.01.064.

    Article  PubMed  Google Scholar 

  25. Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK, Grogan M, Hayman SR, Kapoor P, Leung N, et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood. 2017;129:2111–9. https://doi.org/10.1182/blood-2016-11-751628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merlini G. A Step Forward in Solving Amyloidosis. N Engl J Med. 2023;389:1615–7. https://doi.org/10.1056/NEJMe2309308.

    Article  PubMed  Google Scholar 

  27. Grogan M, Lopez-Jimenez F, Cohen-Shelly M, Dispenzieri A, Attia ZI, Abou Ezzedine OF, Lin G, Kapa S, Borgeson DD, Friedman PA, Murphree DH Jr. Artificial Intelligence-Enhanced Electrocardiogram for the Early Detection of Cardiac Amyloidosis. Mayo Clin Proc. 2021;96:2768–78. https://doi.org/10.1016/j.mayocp.2021.04.023.

    Article  PubMed  Google Scholar 

  28. •• Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019;25:70–4. https://doi.org/10.1038/s41591-018-0240-2. This paper from the Mayo Clinic AI-ECG group launched the race on structural heart disease diagnostics with prediction of left ventricular systolic dysfucntion from ECG signal data alone. In addition to demonstrating the capability of AI-ECG in identifying reduced EF, this short letter/focus paper is also a model in terms of AI-ECG research best-practices.

    Article  CAS  PubMed  Google Scholar 

  29. Attia ZI, Kapa S, Yao X, Lopez-Jimenez F, Mohan TL, Pellikka PA, Carter RE, Shah ND, Friedman PA, Noseworthy PA. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. 2019;30:668–74. https://doi.org/10.1111/jce.13889.

    Article  PubMed  Google Scholar 

  30. Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL, Albus M, Sheele JM, Bellolio F, Friedman PA, et al. Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circ Arrhythm Electrophysiol. 2020;13:e008437. https://doi.org/10.1161/CIRCEP.120.008437.

    Article  CAS  PubMed  Google Scholar 

  31. Mahayni AA, Attia ZI, Medina-Inojosa JR, Elsisy MFA, Noseworthy PA, Lopez-Jimenez F, Kapa S, Asirvatham SJ, Friedman PA, Crestenallo JA, Alkhouli M. Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac Surgery. Mayo Clin Proc. 2021;96:3062–70. https://doi.org/10.1016/j.mayocp.2021.06.024.

    Article  PubMed  Google Scholar 

  32. Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, Kapa S, Friedman PA, Lopez-Jimenez F. Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis. Circ Arrhythm Electrophysiol. 2020;13:e007988. https://doi.org/10.1161/CIRCEP.119.007988.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rushlow DR, Croghan IT, Inselman JW, Thacher TD, Friedman PA, Yao X, Pellikka PA, Lopez-Jimenez F, Bernard ME, Barry BA, et al. Clinician Adoption of an Artificial Intelligence Algorithm to Detect Left Ventricular Systolic Dysfunction in Primary Care. Mayo Clin Proc. 2022;97:2076–85. https://doi.org/10.1016/j.mayocp.2022.04.008.

    Article  PubMed  Google Scholar 

  34. Lou YS, Lin CS, Fang WH, Lee CC, Ho CL, Wang CH, Lin C. Artificial Intelligence-Enabled Electrocardiogram Estimates Left Atrium Enlargement as a Predictor of Future Cardiovascular Disease. J Pers Med. 2022;12. https://doi.org/10.3390/jpm12020315.

  35. Tison GH, Zhang J, Delling FN, Deo RC. Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circ Cardiovasc Qual Outcomes. 2019;12:e005289. https://doi.org/10.1161/CIRCOUTCOMES.118.005289.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Haimovich JS, Diamant N, Khurshid S, Di Achille P, Reeder C, Friedman S, Singh P, Spurlock W, Ellinor PT, Philippakis A, et al. Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms. Cardiovasc Digit Health J. 2023;4:48–59. https://doi.org/10.1016/j.cvdhj.2023.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tseng AS, Thao V, Borah BJ, Attia IZ, Medina Inojosa J, Kapa S, Carter RE, Friedman PA, Lopez-Jimenez F, Yao X, Noseworthy PA. Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction. Mayo Clin Proc. 2021;96:1835–44. https://doi.org/10.1016/j.mayocp.2020.11.032.

    Article  PubMed  Google Scholar 

  38. Giudicessi JR, Schram M, Bos JM, Galloway CD, Shreibati JB, Johnson PW, Carter RE, Disrud LW, Kleiman R, Attia ZI, et al. Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device. Circulation. 2021;143:1274–86. https://doi.org/10.1161/CIRCULATIONAHA.120.050231.

    Article  CAS  PubMed  Google Scholar 

  39. Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA, Ackerman MJ. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiol. 2021;6:532–8. https://doi.org/10.1001/jamacardio.2020.7422.

    Article  PubMed  Google Scholar 

  40. Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, Albert DE, Attia ZI, Carter RE, Asirvatham SJ, et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA Cardiol. 2019;4:428–36. https://doi.org/10.1001/jamacardio.2019.0640.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin CS, Lin C, Fang WH, Hsu CJ, Chen SJ, Huang KH, Lin WS, Tsai CS, Kuo CC, Chau T, et al. A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development. JMIR Med Inform. 2020;8:e15931. https://doi.org/10.2196/15931.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chang DW, Lin CS, Tsao TP, Lee CC, Chen JT, Tsai CS, Lin WS, Lin C. Detecting Digoxin Toxicity by Artificial Intelligence-Assisted Electrocardiography. Int J Environ Res Public Health. 2021;18. https://doi.org/10.3390/ijerph18073839.

  43. Attia ZI, Sugrue A, Asirvatham SJ, Ackerman MJ, Kapa S, Friedman PA, Noseworthy PA. Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study. PLoS ONE. 2018;13:e0201059. https://doi.org/10.1371/journal.pone.0201059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiong P, Lee SM, Chan G. Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review. Front Cardiovasc Med. 2022;9:860032. https://doi.org/10.3389/fcvm.2022.860032.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu WC, Lin CS, Tsai CS, Tsao TP, Cheng CC, Liou JT, Lin WS, Cheng SM, Lou YS, Lee CC, Lin C. A deep learning algorithm for detecting acute myocardial infarction. EuroIntervention. 2021;17:765–73. https://doi.org/10.4244/EIJ-D-20-01155.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Somani SS, Honarvar H, Narula S, Landi I, Lee S, Khachatoorian Y, Rehmani A, Kim A, De Freitas JK, Teng S, et al. Development of a machine learning model using electrocardiogram signals to improve acute pulmonary embolism screening. Eur Heart J Digit Health. 2022;3:56–66. https://doi.org/10.1093/ehjdh/ztab101.

    Article  PubMed  Google Scholar 

  47. Estill J. Knowledge is the key to prevention: Managing the silent epidemic of sleep apnoea. Lancet Reg Health Eur. 2022;16:100377. https://doi.org/10.1016/j.lanepe.2022.100377.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215-220. https://doi.org/10.1161/01.cir.101.23.e215.

    Article  CAS  PubMed  Google Scholar 

  49. Sheta A, Turabieh H, Thaher T, Too J, Mafarja M, Hossain MS, Surani SR. Diagnosis of Obstructive Sleep Apnea from ECG Signals Using Machine Learning and Deep Learning Classifiers. Appl Sci. 2021;11:6622.

    Article  CAS  Google Scholar 

  50. FDA. Sleep Apnea Feature Device Classification Under Section 513(f)(2)(De Novo). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?id=DEN230041. Accessed 28 Feb 2024.

  51. Attia ZI, Kapa S, Dugan J, Pereira N, Noseworthy PA, Jimenez FL, Cruz J, Carter RE, DeSimone DC, Signorino J, et al. Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram. Mayo Clin Proc. 2021;96:2081–94. https://doi.org/10.1016/j.mayocp.2021.05.027.

    Article  CAS  PubMed  Google Scholar 

  52. Raghunath S, Ulloa Cerna AE, Jing L, vanMaanen DP, Stough J, Hartzel DN, Leader JB, Kirchner HL, Stumpe MC, Hafez A, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat Med. 2020;26:886–91. https://doi.org/10.1038/s41591-020-0870-z.

    Article  CAS  PubMed  Google Scholar 

  53. Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G, Pellikka PA, Munger TM, Asirvatham SJ, Scott CG, et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol. 2019;12:e007284. https://doi.org/10.1161/CIRCEP.119.007284.

    Article  PubMed  PubMed Central  Google Scholar 

  54. FDA. Artificial Intelligence Program: Research on AI/ML-Based Medical Devices. https://www.fda.gov/medical-devices/medical-device-regulatory-science-research-programs-conducted-osel/artificial-intelligence-program-research-aiml-based-medical-devices. Accessed 28 Feb 2023.

  55. Rosier A, Crespin E, Lazarus A, Laurent G, Menet A, Gozlan A, Varma N. A novel machine learning algorithm has the potential to reduce by 1/3 the quantity of ILR episodes needing review. Eur Heart J. 2021;42:316–316. https://doi.org/10.1093/eurheartj/ehab724.0316.

    Article  Google Scholar 

  56. FDA. DeepRhythmAI 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K210822. Accessed 28 Feb 2022.

  57. FDA. AliveCor QT Service 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K212662. Accessed 28 Feb 2022.

  58. FDA. RX-1 Rhythm Express Remote Cardiac Monitoring System 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K200833. Accessed 28 Feb 2020.

  59. FDA. BodyGuardian Remote Monitoring System 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192732. Accessed 28 Feb 2020.

  60. anumana I. Anumana Receives U.S. FDA Breakthrough Device Designation for its Cardiac Amyloidosis Algorithm. https://anumana.ai/newsroom/ZJLQeREAACkAEMC3. Accessed 28 Feb 2023.

  61. Sau A, Ng FS. The emerging role of artificial intelligence enabled electrocardiograms in healthcare. BMJ Med. 2023;2:e000193. https://doi.org/10.1136/bmjmed-2022-000193.

    Article  PubMed  PubMed Central  Google Scholar 

  62. London AJ. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings Cent Rep. 2019;49:15–21. https://doi.org/10.1002/hast.973.

    Article  PubMed  Google Scholar 

  63. McCoy LG, Brenna CTA, Chen SS, Vold K, Das S. Believing in black boxes: machine learning for healthcare does not need explainability to be evidence-based. J Clin Epidemiol. 2022;142:252–7. https://doi.org/10.1016/j.jclinepi.2021.11.001.

    Article  PubMed  Google Scholar 

  64. Ennab M, McHeick H. Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare. Diagnostics (Basel). 2022;12. https://doi.org/10.3390/diagnostics12071557.

  65. Jo YY, Cho Y, Lee SY, Kwon JM, Kim KH, Jeon KH, Cho S, Park J, Oh BH. Explainable artificial intelligence to detect atrial fibrillation using electrocardiogram. Int J Cardiol. 2021;328:104–10. https://doi.org/10.1016/j.ijcard.2020.11.053.

    Article  PubMed  Google Scholar 

  66. He CJ, Ma M, Wang P. Extract interpretability-accuracy balanced rules from artificial neural networks: A review. Neurocomputing. 2020;387:346–58. https://doi.org/10.1016/j.neucom.2020.01.036.

    Article  Google Scholar 

  67. Luo Y, Tseng HH, Cui S, Wei L, Ten Haken RK, El Naqa I. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open. 2019;1:20190021. https://doi.org/10.1259/bjro.20190021.

    Article  PubMed  PubMed Central  Google Scholar 

  68. • van de Leur RR, Bos MN, Taha K, Sammani A, Yeung MW, van Duijvenboden S, Lambiase PD, Hassink RJ, van der Harst P, Doevendans PA, et al. Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders. Eur Heart J Digit Health. 2022;3:390–404. https://doi.org/10.1093/ehjdh/ztac038. This paper shows the feasibility of using DL to encode the ECG into latent variables which can be used to reconstruct the original ECG signal. The authors used a β-variational autoencoder to compress a representative 12-lead ECG beat into 32 latent variables. These variables individually capture key characteristics of ECG morphology and can be used to develop AI models in lieu of the original ECG signal.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wouters PC, van de Leur RR, Vessies MB, van Stipdonk AMW, Ghossein MA, Hassink RJ, Doevendans PA, van der Harst P, Maass AH, Prinzen FW, et al. Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy. Eur Heart J. 2023;44:680–92. https://doi.org/10.1093/eurheartj/ehac617.

    Article  PubMed  Google Scholar 

  70. Diamant N, Reinertsen E, Song S, Aguirre AD, Stultz CM, Batra P. Patient contrastive learning: A performant, expressive, and practical approach to electrocardiogram modeling. PLoS Comput Biol. 2022;18:e1009862. https://doi.org/10.1371/journal.pcbi.1009862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gichoya JW, Thomas K, Celi LA, Safdar N, Banerjee I, Banja JD, Seyyed-Kalantari L, Trivedi H, Purkayastha S. AI pitfalls and what not to do: mitigating bias in AI. Br J Radiol. 2023;96:20230023. https://doi.org/10.1259/bjr.20230023.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366:447–53. https://doi.org/10.1126/science.aax2342.

    Article  CAS  PubMed  Google Scholar 

  73. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, Aggarwal K, Ibrahim S, Patil V, Smriti K, et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front Surg. 2022;9:862322.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021;22:122. https://doi.org/10.1186/s12910-021-00687-3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

B.O., Z.S., C.T., A.G., and A.N. wrote the main manuscript. C.H. prepared table 1. B.O. and Z.S. prepared tables 2-6. A.G. prepared table 7 and figure 1. All authors reviewed the manuscript.

Corresponding author

Correspondence to Amit Noheria.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ose, B., Sattar, Z., Gupta, A. et al. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02062-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02062-1

Keywords

Navigation