Skip to main content

A Review of Time-Series Anomaly Detection Techniques: A Step to Future Perspectives

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2021)

Abstract

Anomaly detection is a significant problem that has been studied in a broader spectrum of research areas due to its diverse applications in different domains. Despite the usage of modern technologies and the advances in system monitoring and anomaly detection techniques, false-positive rates are still high. There exist many anomaly detection algorithms, among them few are domain-specific, and others are more generic techniques. Despite a significant amount of advance in this research area, there does not exist a single winning anomaly detector known to work well across different datasets. In this paper, we review the literature related to types of anomalies, data types of anomalies, data types of time-series, components of time-series data, classification of anomalies context, and classification methods of time-series anomalies detection. We presented a taxonomy to characterize the various aspects related to time-series anomaly detection. One of the key challenges in current anomaly detection techniques is to perform anomaly detection with regards to the type of activities or the context that a system is exposed. We hope that this investigation gives a more remarkable ability to understand the evolving methods of time-series anomaly detection and how computational methods can be applied in this domain in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, H.-S.: A survey of research on anomaly detection for time series. In: 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 426–431 (2016)

    Google Scholar 

  2. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data, arXiv preprint arXiv:2002.04236 (2020)

  3. Yeoh, W., Koronios, A.: Critical success factors for business intelligence systems. J. Comput. Inf. Syst. 50, 23–32 (2010)

    Google Scholar 

  4. Al Mamun, S.A., Valimaki, J.: Anomaly detection and classification in Cellular Networks using automatic labeling technique for applying supervised learning. Procedia Comput. Sci. 140, 186–195 (2018)

    Article  Google Scholar 

  5. Landauer, M., Wurzenberger, M., Skopik, F., Settanni, G., Filzmoser, P.: Time series analysis: unsupervised anomaly detection beyond outlier detection. In: International Conference on Information Security Practice and Experience, pp. 19–36 (2018)

    Google Scholar 

  6. Teng, X., Lin, Y.-R., Wen, X.: Anomaly detection in dynamic networks using multi-view time-series hypersphere learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 827–836 (2017)

    Google Scholar 

  7. Fahim, M., Sillitti, A.: Anomaly detection, analysis and prediction techniques in iot environment: a systematic literature review. IEEE Access 7, 81664–81681 (2019)

    Article  Google Scholar 

  8. Foorthuis, R.: On the nature and types of anomalies: a review, arXiv preprint arXiv:2007.15634 (2020)

  9. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45, 1–34 (2012)

    Article  MATH  Google Scholar 

  10. Talagala, T.S., Hyndman, R.J., Athanasopoulos, G.: Meta-learning how to forecast time series. Monash Econometrics and Business Statistics Working Papers, vol. 6, p. 18, (2018)

    Google Scholar 

  11. Idrees, S.M., Alam, M.A., Agarwal, P.: A prediction approach for stock market volatility based on time series data. IEEE Access 7, 17287–17298 (2019)

    Article  Google Scholar 

  12. Zhou, S., Shen, W., Zeng, D., Fang, M., Wei, Y., Zhang, Z.: Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes. Signal Process. Image Commun. 47, 358–368 (2016)

    Article  Google Scholar 

  13. Liu, C., Liu, J., Wang, J., Xu, S., Han, H., Chen, Y.: An attention-based spatiotemporal gated recurrent unit network for point-of-interest recommendation. ISPRS Int. J. Geo-Inf. 8, 355 (2019)

    Article  Google Scholar 

  14. Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53, 1–37 (2020)

    Google Scholar 

  15. Alam, T.M., Awan, M.J.: Domain analysis of information extraction techniques. Int. J. Multidiscip. Sci. Eng. 9, 1–9 (2018)

    Google Scholar 

  16. Ghani, M.U., Alam, T.M., Jaskani, F.H.: Comparison of classification models for early prediction of breast cancer. In: 2019 International Conference on Innovative Computing (ICIC), pp. 1–6 (2019)

    Google Scholar 

  17. Ali, Y., Farooq, A., Alam, T.M., Farooq, M.S., Awan, M.J., Baig, T.I.: Detection of schistosomiasis factors using association rule mining. IEEE Access 7, 186108–186114 (2019)

    Article  Google Scholar 

  18. Baig, T.I., Alam, T.M., Anjum, T., Naseer, S., Wahab, A., Imtiaz, M., et al.: Classification of human face: asian and non-Asian people. In: 2019 International Conference on Innovative Computing (ICIC), pp. 1–6 (2019)

    Google Scholar 

  19. Kamran, S., Farhat, I., Talha Mahboob, A., Gagandeep Kaur, A., Liton, D., Abdul Ghaffar, K., et al.: The impact of artificial intelligence and robotics on the future employment opportunities. Trends Comput. Sci. Inf. Technol. 5, 5 (2020)

    Google Scholar 

  20. Alam, T.M., Shaukat, K., Mushtaq, M., Ali, Y., Khushi, M., Luo, S., et al.: Corporate bankruptcy prediction: an approach towards better corporate world. Comput. J. 63 (2020)

    Google Scholar 

  21. Cerqueira, V., Torgo, L., Soares, C.: Layered learning for early anomaly detection: predicting critical health episodes. In: International Conference on Discovery Science, pp. 445–459 (2019)

    Google Scholar 

  22. Golmohammadi, K., Zaiane, O.R.: Sentiment analysis on Twitter to improve time series contextual anomaly detection for detecting stock market manipulation. In: International Conference on Big Data Analytics and Knowledge Discovery, pp. 327–342 (2017)

    Google Scholar 

  23. Le, X.-H., Ho, H.V., Lee, G., Jung, S.: Application of long short-term memory (LSTM) neural network for flood forecasting. Water 11, 1387 (2019)

    Article  Google Scholar 

  24. Gao, S., Huang, Y., Zhang, S., Han, J., Wang, G., Zhang, M., et al.: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 589, 125188 (2020)

    Article  Google Scholar 

  25. Singh, A.: Anomaly detection for temporal data using long short-term memory (LSTM) (2017)

    Google Scholar 

  26. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)

    Google Scholar 

  27. Lee, T.J., Gottschlich, J., Tatbul, N., Metcalf, E., Zdonik, S.: Greenhouse: a zero-positive machine learning system for time-series anomaly detection, arXiv preprint arXiv:1801.03168 (2018)

  28. Lee, M.-C., Lin, J.-C., Gran, E.G.: RePAD: real-time proactive anomaly detection for time series. In: International Conference on Advanced Information Networking and Applications, pp. 1291–1302 (2020)

    Google Scholar 

  29. Basora, L., Olive, X., Dubot, T.: Recent advances in anomaly detection methods applied to aviation. Aerospace 6, 117 (2019)

    Article  Google Scholar 

  30. Shaukat, K., Luo, S., Varadharajan, V., Hameed, I.A., Chen, S., Liu, D., et al.: Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies 13, 2509 (2020)

    Article  Google Scholar 

  31. Kacprzyk, J., Owsiński, J.W., Viattchenin, D.A., Shyrai, S.: A new heuristic algorithm of possibilistic clustering based on intuitionistic fuzzy relations. In: Novel Developments in Uncertainty Representation and Processing. Springer (2016)

    Google Scholar 

  32. Heryadi, Y.: The effect of several kernel functions to financial transaction anomaly detection performance using one-class SVM. In: 2019 International Congress on Applied Information Technology (AIT), pp. 1–7 (2019)

    Google Scholar 

  33. Pang, G., Cao, L., Chen, L., Liu, H.: Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 410–419 (2016)

    Google Scholar 

  34. Munir, M., Siddiqui, S.A., Chattha, M.A., Dengel, A., Ahmed, S.: FuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models. Sensors 19, 2451 (2019)

    Article  Google Scholar 

  35. Kourtis, M.-A., Xilouris, G., Gardikis, G., Koutras, I.: Statistical-based anomaly detection for NFV services. In: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 161–166 (2016)

    Google Scholar 

  36. Garcia-Font, V., Garrigues, C., Rifà-Pous, H.: A comparative study of anomaly detection techniques for smart city wireless sensor networks. Sensors 16, 868 (2016)

    Article  Google Scholar 

  37. Luo, H., Zhong, S.: Gas turbine engine gas path anomaly detection using deep learning with Gaussian distribution. In: 2017 Prognostics and System Health Management Conference (PHM-Harbin), pp. 1–6 (2017)

    Google Scholar 

  38. Lüdtke, O., Robitzsch, A., West, S.G.: Regression models involving nonlinear effects with missing data: a sequential modeling approach using Bayesian estimation. Psychol. Methods 25, 157–181 (2019)

    Article  Google Scholar 

  39. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016)

    Article  Google Scholar 

  40. Bansod, S.D., Nandedkar, A.V.: Crowd anomaly detection and localization using histogram of magnitude and momentum. Vis. Comput. 36, 609–620 (2020)

    Article  Google Scholar 

  41. das Chagas, J.V.S., Ivo, R.F., Guimarães, M.T., de A. Rodrigues, D., de S. Rebouças, E., Rebouças Filho, P.P.: Fast fully automatic skin lesions segmentation probabilistic with Parzen window. Comput. Med. Imaging Graph. 85, 101774 (2020)

    Google Scholar 

  42. Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., et al.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 19, 2456–2501 (2017)

    Google Scholar 

  43. Abadi, D.: Consistency tradeoffs in modern distributed database system design: CAP is only part of the story. Computer 45, 37–42 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Shaukat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaukat, K. et al. (2021). A Review of Time-Series Anomaly Detection Techniques: A Step to Future Perspectives. In: Arai, K. (eds) Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-73100-7_60

Download citation

Publish with us

Policies and ethics