Skip to main content
Log in

A modeling method for elastic-viscous-plastic material with fractal structure and its solution

一种具有分形结构的弹黏塑性材料建模及其求解方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A modeling method with the fractal structure to describe the elastic-viscous-plastic properties of materials is proposed in this paper. Moreover, the solution can be obtained without solving the corresponding infinite order differential equation. Then, a model (L-R model) to characterize the elastic-viscous-plastic properties of materials with complex infinite order fractal structure was established based on this modeling method. The mechanical properties are described by the constitutive relationship of spring (elasticity), adhesive pot (viscosity), and plastic body (plasticity) elements by MATLAB/Simulink. The three-element model is connected in series and parallel according to the rules of the Bingham model. Then, the Bingham model is used as the original model to set and iterate according to the fractal theory. And the solution of the corresponding infinite order differential equation for describing elastic-viscous-plastic of materials can be obtained directly without solving the complex differential equation of the model. To verify the reliability of this modeling method and its solution results, cyclic load experiments were carried out on five materials with different fractal structures, steel, slate, coal, red sandstone, and salt rock. Comparing the experimental results with the solution results, it indicated that the established model can effectively describe the material’s performance of the elastic-viscous-plastic properties.

摘要

本文建立了一种具有分形结构的元件模型, 用于描述材料弹粘塑性特性, 并可以在无需求解相应的无限阶微分方程的情况下获得各载荷作用下模型的力学反应. 首先, 基于这种建模方法, 建立了表征具有复杂无限阶分形结构材料弹黏塑性特性的混联元件模型(L-R模型). 然后, 利用MATLAB/Simulink, 借助弹簧(弹性)、 黏壶(黏性)和塑性体(塑性)单元的本构关系来描述材料的基本力学性能. 之后, 将宾厄姆模型作为基本模型按照分形理论进行迭代, 通过求解得到描述材料在各种载荷作用下的力学(弹黏塑性)反应. 最后, 为了验证该建模方法及其求解结果的可靠性, 在钢、 板岩、 煤、 红砂岩和盐岩五种不同分形结构的材料上进行了循环载荷实验. 将实验结果与求解结果进行比较, 表明所建立的模型能够有效地描述材料的弹黏塑性性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Anand, and N. Ames, On modeling the micro-indentation response of an amorphous polymer, Int. J. Plast. 22, 1123 (2006).

    Article  Google Scholar 

  2. D. S. Bhiogade, S. M. Randiwe, A. M. Kuthe, and A. A. Likhite, Study of hot tearing in stainless steel CF3M during casting using simulation and experimental method, Inter. Metalcast. 12, 331 (2018).

    Article  Google Scholar 

  3. N. Girgis, B. Li, S. Akhtar, and B. Courcelles, Experimental study of rate-dependent uniaxial compressive behaviors of two artificial frozen sandy clay soils, Cold Regions Sci. Tech. 180, 103166 (2020).

    Article  Google Scholar 

  4. Y. Zhao, Y. Wang, W. Wang, W. Wan, and J. Tang, Modeling of nonlinear rheological behavior of hard rock using triaxial rheological experiment, Int. J. Rock Mech. Min. Sci. 93, 66 (2017).

    Article  Google Scholar 

  5. G. N. Boukharov, M. W. Chanda, and N. G. Boukharov, The three processes of brittle crystalline rock creep, Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 32, 325 (1995).

    Article  Google Scholar 

  6. C. Jaeger, Rock Mechanics and Engineering (Cambridge University Press, Cambridge, 1979).

    Book  Google Scholar 

  7. R. Meng, D. Yin, and C. S. Drapaca, A variable order fractional constitutive model of the viscoelastic behavior of polymers, Int. J. Non-Linear Mech. 113, 171 (2019).

    Article  Google Scholar 

  8. R. Meng, D. Yin, H. Yang, and G. Xiang, Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers, Phys. A-Stat. Mech. Appl. 545, 123763 (2020).

    Article  MathSciNet  Google Scholar 

  9. F. Liu, J. Wang, S. Long, H. Zhang, and X. Yao, Experimental and modeling study of the viscoelastic-viscoplastic deformation behavior of amorphous polymers over a wide temperature range, Mech. Mater. 167, 104246 (2022).

    Article  Google Scholar 

  10. W. Zhao, L. Liu, J. Leng, and Y. Liu, Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite, Compos. Part B-Eng. 179, 107455 (2019).

    Article  Google Scholar 

  11. F. Zhao, X. Zheng, S. Zhou, B. Zhou, S. Xue, and Y. Zhang, Constitutive model for epoxy shape memory polymer with regulable phase transition temperature, Int. J. Smart Nano Mater. 12, 72 (2021).

    Article  Google Scholar 

  12. L. Yang, L. Yang, and R. L. Lowe, A viscoelasticity model for polymers: Time, temperature, and hydrostatic pressure dependent Young’s modulus and Poisson’s ratio across transition temperatures and pressures, Mech. Mater. 157, 103839 (2021).

    Article  Google Scholar 

  13. S. Koric, and B. G. Thomas, Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws, J. Mater. Process. Tech. 197, 408 (2008).

    Article  Google Scholar 

  14. S. Koric, and B. G. Thomas, Efficient thermo-mechanical model for solidification processes, Int. J. Numer. Meth. Eng. 66, 1955 (2006).

    Article  Google Scholar 

  15. M. Krobath, R. Krobath, C. Bernhard, and W. Ecker, Elasto-visco-plastic material model of a directly-cast low-carbon steel at high temperatures, Materials 13, 2281 (2020).

    Article  Google Scholar 

  16. A. Vakhrushev, A. Kharicha, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, J. Watzinger, and C. M. G. Rodrigues, Norton-Hoff model for deformation of growing solid shell of thin slab casting in funnel-shape mold, J. Iron Steel Res. Int. 29, 88 (2022).

    Article  Google Scholar 

  17. Y. Wang, J. Wang, M. Lei, and Y. Yao, A crystal plasticity coupled damage constitutive model of high entropy alloys at high temperature, Acta Mech. Sin. 38, 122116 (2022).

    Article  MathSciNet  Google Scholar 

  18. H. Tang, D. Wang, R. Huang, X. Pei, and W. Chen, A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics, Bull. Eng. Geol. Environ. 77, 375 (2018).

    Article  Google Scholar 

  19. L. Wang, and F. Zhou, Analysis of elastic-viscoplastic creep model based on variable-order differential operator, Appl. Math. Model. 81, 37 (2020).

    Article  MathSciNet  Google Scholar 

  20. M. Wang, X. Xu, Q. Liu, Y. Ding, and F. Shen, A nonlinear fractional-order damage model of stress relaxation of net-like red soil, Sci. Rep. 11, 22917 (2021).

    Article  Google Scholar 

  21. F. Zhou, L. Wang, Z. Liu, and W. Zhao, A viscoelastic-viscoplastic mechanical model of time-dependent materials based on variable-order fractional derivative, Mech. Time-Depend. Mater. 26, 699 (2022).

    Article  Google Scholar 

  22. H. W. Zhou, C. P. Wang, L. MishnaevskyJr., Z. Q. Duan, and J. Y. Ding, A fractional derivative approach to full creep regions in salt rock, Mech. Time-Depend. Mater. 17, 413 (2013).

    Article  Google Scholar 

  23. S. Q. Yang, B. Hu, and P. Xu, Study on the damage-softening constitutive model of rock and experimental verification, Acta Mech. Sin. 35, 786 (2019).

    Article  Google Scholar 

  24. L. Müller, Fundamentals of rock mechanics: Lectures held at the Department for Mechanics of Deformable Bodies, September 1969, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11, A1 (1969).

    Google Scholar 

  25. D. Lei, Y. Liang, and R. Xiao, A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics, Phys. A-Stat. Mech. Appl. 490, 465 (2018).

    Article  MathSciNet  Google Scholar 

  26. F. Wu, H. Zhang, Q. Zou, C. Li, J. Chen, and R. Gao, Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory, Mech. Mater. 150, 103600 (2020).

    Article  Google Scholar 

  27. C. Zopf, S. E. Hoque, and M. Kaliske, Comparison of approaches to model viscoelasticity based on fractional time derivatives, Comput. Mater. Sci. 98, 287 (2015).

    Article  Google Scholar 

  28. A. E. Huespe, A. Cardona, N. Nigro, and V. Fachinotti, Visco-plastic constitutive models of steel at high temperature, J. Mater. Process. Tech. 102, 143 (2000).

    Article  Google Scholar 

  29. V. D. Fachinotti, and A. Cardona, Constitutive models of steel under continuous casting conditions, J. Mater. Process. Tech. 135, 30 (2003).

    Article  Google Scholar 

  30. L. Guo, Y. Sui, and X. Zhang, High-temperature creep constitutional model of Q460E steel and effect of creep on bulging deformation of continuous casting slab, J. Iron Steel Res. Int. 25, 1123 (2018).

    Article  Google Scholar 

  31. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156, 636 (1967).

    Article  Google Scholar 

  32. T. Tatekawa, and K. Maeda, Primordial fractal density perturbations and structure formation in the universe: One-dimensional collisionless sheet model, Astrophys. J. 547, 531 (2001).

    Article  Google Scholar 

  33. Y. Li, and R. Huang, Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces, Int. J. Rock Mech. Min. Sci. 75, 15 (2015).

    Article  Google Scholar 

  34. R. Ge, Y. Xue, and X. Niu, Experimental study on low-cycle fatigue behavior of Chinese LYP225, China Civil Eng. J. 50, 13 (2017).

    Google Scholar 

  35. X. Zhou, X. Pan, and F. Berto, A state-of-the-art review on creep damage mechanics of rocks, Fatigue Fract. Eng. Mat. Struct. 45, 627 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 41572334), and the Innovation Fund Research Project (Grant Nos. SKLGDUEK202222 and SKLGDUEK202216).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Dejian Li proposed the idea, set the research target (Conceptualization), developed the modeling method (Methodology), and acquired the funding, i.e., the National Natural Science Foundation of China (Grant No. 41572334) and the Innovation Fund Research Project (Grant No. SKLGDUEK202222) (Funding acquisition). Hao Qi produced metadata (Data curation), conducted formal analysis (Formal analysis), and conducted the series experiments (Investigation). Mingyuan Zhang conducted data analysis and designed the methodology of the study (Formal analysis and Methodology), acquired the funding, i.e., the Innovation Fund Research Project (Grant No. SKLGDUEK2022016), and wrote the original draft and edited it. Junhao Huo conducted computational analysis (Formal analysis), and drew figures (Visualization). Jiangshuo Liu checked the data in the manuscript and reviewed the paper (Validation). Yuanhao Rao conducted the series experiments (Investigation), proposed the new model (Methodology), and produced metadata and scrub data (Data curation).

Corresponding authors

Correspondence to Dejian Li  (李德建), Mingyuan Zhang  (张鸣原) or Yuanhao Rao  (饶远昊).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Qi, H., Zhang, M. et al. A modeling method for elastic-viscous-plastic material with fractal structure and its solution. Acta Mech. Sin. 40, 423263 (2024). https://doi.org/10.1007/s10409-023-23263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23263-x

Navigation