Skip to main content
Log in

A viscoelastic-viscoplastic mechanical model of time-dependent materials based on variable-order fractional derivative

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A fractional viscoelastic-viscoplastic model is developed for time-dependent materials, by considering the reference stress in the fractional viscoelastic body. Using this model, the creep, stress relaxation and strain rate behavior is numerically analyzed for frozen soil and zeonex results, with the consideration of continuous order functions that conform to the order interval limits. Subsequently, a variable-order viscoelastic-viscoplastic creep model and also a variable-order viscoelastic-viscoplastic strain rate model are established by the developed variable-order viscoplastic and fractional viscoelastic models, respectively. Finally, the rheological behavior of frozen soil and Zeonex is simulated using the variable-order viscoelastic-viscoplastic creep model and variable-order viscoelastic-viscoplastic strain rate model, and the model parameters are analyzed. The results show that the proposed order function equation is continuous and conforms to the interval effect of the definition. The variable-order viscoelastic-viscoplastic rheological model takes into account the elastic-visco-plastic behavior of the material in the rheological process, and has high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(6), 918–925 (1985)

    MATH  Google Scholar 

  • Bhasin, A., Bommavaram, R., Greenfield, M.L., Little, D.N.: Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders. J. Mater. Civ. Eng. 23(4), 485–492 (2011)

    Google Scholar 

  • Cai, W., Wang, P., Fan, J.J.: A variable-order fractional model of tensile and shear behaviors for sintered nano-silver paste used in high power electronics. Mech. Mater. 145, 103391 (2020)

    Google Scholar 

  • Coimbra, C.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cui, X.X., Wu, X.D., Wan, M., Ma, B.L., Zhang, Y.L.: A novel constitutive model for stress relaxation of Ti-6Al-4V alloy sheet. Int. J. Mech. Sci. 161–162, 105034 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105034

    Article  Google Scholar 

  • Gemant, A.A.: Method of analyzing experimental results obtained from elasto-viscous bodies. Physics 7(8), 311–317 (1936)

    Google Scholar 

  • Girgis, N., Li, B., Akhtar, S., Courcelles, B.: Experimental study of rate-dependent uniaxial compressive behaviors of two artificial frozen sandy clay soils. Cold Reg. Sci. Technol. 180, 103166 (2020). https://doi.org/10.1016/j.coldregions.2020.103166

    Article  Google Scholar 

  • Gloeckle, W.G., Nonnenmacher, T.F.: Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24(24), 6426–6434 (1991)

    Google Scholar 

  • Ingman, D., Suzdalnitsky, J.: Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193(52), 5585–5595 (2004)

    MathSciNet  MATH  Google Scholar 

  • Ingman, D., Suzdalnitsky, J., Zeifman, M.: Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. 67(2), 383–390 (2000)

    MATH  Google Scholar 

  • Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51(2), 299–307 (1984)

    MathSciNet  MATH  Google Scholar 

  • Krishnaswamy, H., Jain, J.: Stress relaxation test: issues in modelling and interpretation. Manuf. Lett. 26, 64–68 (2020)

    Google Scholar 

  • Liao, M.K., Lai, Y.M., Liu, E.L., Wan, X.S.: A fractional order creep constitutive model of warm frozen silt. Acta Geotech. 12(2), 1–13 (2016)

    Google Scholar 

  • Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002)

    MathSciNet  MATH  Google Scholar 

  • Lynnette, E.S., Ramirez, L., Carlos, F.M., Coimbra, C.: A variable order constitutive relation for viscoelasticity. Ann. Phys. 16(7–8), 543–552 (2007)

    MathSciNet  MATH  Google Scholar 

  • Meng, R.F., Yin, D.S., Zhou, C., Wu, H.: Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl. Math. Model. 40(1), 398–406 (2016)

    MathSciNet  MATH  Google Scholar 

  • Meng, R.F., Yin, D.S., Drapaca, C.S.: A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int. J. Non-Linear Mech. 113(7), 171–177 (2019a)

    MATH  Google Scholar 

  • Meng, R.F., Yin, D.S., Drapaca, C.S.: Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput. Mech. (2019b). https://doi.org/10.1016/j.physa.2019.123763

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, R.F., Yin, D.S., Yang, H.X., Xiang, G.J.: Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers. Physica A 545, 123736 (2020)

    MathSciNet  Google Scholar 

  • Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapura, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43(7–8), 2318–2335 (2006)

    Google Scholar 

  • Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Makradi, A.: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int. J. Solids Struct. 44(24), 7938–7954 (2007)

    MATH  Google Scholar 

  • Rogers, L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27(4), 351 (1983)

    MATH  Google Scholar 

  • Samuel, W.J.W., Rorrer, R.A.L., Duren, R.G.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3(3), 279–303 (1999)

    Google Scholar 

  • Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A, Math. Gen. 28, 6567–6584 (1995)

    MATH  Google Scholar 

  • Scott Blair, G.W.: The role of psychophysics in rheology. J. Colloid Sci. 2(1), 21–32 (1947)

    Google Scholar 

  • Sene, N.: Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents. Journal of King Saud University – Science 33(1) (2020). https://doi.org/10.1016/j.jksus.2020.101275

  • Sene, N.: Mathematical views of the fractional Chua’s electrical circuit described by the Caputo-Liouville derivative. Rev. Mex. Fis. 67(1), 91 (2021)

    MathSciNet  Google Scholar 

  • Smit, W., Vries, H.D.: Rheological models containing fractional derivatives. Rheol. Acta 9(4), 525–534 (1970)

    Google Scholar 

  • Song, Y., Wang, H.P., Chang, Y.T., Li, Y.Q.: Nonlinear creep model and parameter identification of mudstone based on a modified fractional viscous body. Environ. Earth Sci. 78(20) (2019). https://doi.org/10.1007/s12665-019-8619-z

  • Soon, C.M., Coimbra, C., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    MATH  Google Scholar 

  • Soranakom, C., Mobasher, B.: Correlation of tensile and flexural responses of strain softening and strain hardening cement composites. Cem. Concr. Compos. 30(6), 465–477 (2008)

    Google Scholar 

  • Srivastava, V., Chester, S.A., Ames, N.M., Anand, L.: A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26(8), 1138–1182 (2010)

    MATH  Google Scholar 

  • Wang, L.Y., Zhou, F.X.: Analysis of elastic-viscoplastic creep model based on variable-order differential operator. Appl. Math. Model. 81(5), 37–49 (2020a)

    MathSciNet  MATH  Google Scholar 

  • Wang, L.Y., Zhou, F.X.: Fractional derivative in the elastic-viscoplastic stress-strain state model describing anisotropic creep of soft clays. Mech. Time-Depend. Mater. 4, 1–15 (2020b)

    Google Scholar 

  • Wang, Z., Stoica, A.D., Ma, D., Beese, A.M.: Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: application to additive manufacturing. Mater. Sci. Eng. A 707, 585–592 (2017)

    Google Scholar 

  • Wu, F., Liu, J.F., Wang, J.: An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ. Earth Sci. 73(11), 6965–6971 (2015)

    Google Scholar 

  • Wu, F., Gao, R.B., Liu, J., Li, G.B.: New fractional variable-order creep model with short memory. Appl. Math. Comput. 380, 125278 (2020a). https://doi.org/10.1016/j.amc.2020.125278

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, F., Zhang, H., Zou, Q.L., Li, C.B., Chen, J., Gao, R.B.: Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mech. Mater. 150, 103600 (2020b)

    Google Scholar 

  • Xia, C.C., Wang, X.D., Xu, C.B., Zhang, C.S.: Method to identify rheological models by unified rheological model theory and case study. Chin. J. Rock Mech. Eng. 8, 1594–1600 (2008)

    Google Scholar 

  • Yin, J.H., Zhu, J.G., Graham, J.: A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification. Can. Geotech. J. 39(1), 157–173 (2002)

    Google Scholar 

  • Yin, D.S., Li, Y.Q., Wu, H., Duan, X.M.: Fractional description of mechanical property evolution of soft soils during creep. Water Sci. Eng. 6(4), 446–455 (2013)

    Google Scholar 

  • Yin, Z.Y., Yin, J.H., Huang, H.W.: Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling. Mar. Georesour. Geotechnol. 33(1), 79–91 (2015)

    Google Scholar 

  • Yuan, Y.C.: Self-healing in polymers and polymer composites. Concepts, realization and outlook: a review. eXPRESS Polym. Lett. 2(4), 238–250 (2008)

    Google Scholar 

  • Zhao, Y.L., Wang, Y.X., Wang, W.J., Wan, W., Tang, J.Z.: Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int. J. Rock Mech. Min. 93, 66–75 (2017)

    Google Scholar 

  • Zhou, H.W., Wang, C.P., Mishnaevsky, L., Duan, Z.Q., Ding, J.Y.: A fractional derivative approach to full creep regions in salt rock. Mech. Time-Depend. Mater. 17(3), 413–425 (2013)

    Google Scholar 

  • Zhou, Z.W., Ma, W., Zhang, S.J., Du, H.M., Mu, Y.H., Li, G.Y.: Multiaxial creep of frozen loess. Mech. Mater. 95(8), 172–191 (2016)

    Google Scholar 

  • Zhu, Q.Y., Yin, Z.Y., Hicher, P.Y., Shen, S.L.: Nonlinearity of one-dimensional creep characteristics of soft clays. Acta Geotech. 11(4), 1–14 (2016)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (11962016 and 51978320), and by the Funds for Creative Research Groups of Gansu Province (20JR5RA478). The authors are grateful to the reviewers for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ye Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Fx., Wang, Ly., Liu, Zy. et al. A viscoelastic-viscoplastic mechanical model of time-dependent materials based on variable-order fractional derivative. Mech Time-Depend Mater 26, 699–717 (2022). https://doi.org/10.1007/s11043-021-09508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09508-x

Keywords

Navigation