Skip to main content
Log in

Study on the damage-softening constitutive model of rock and experimental verification

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A damage-softening model is presented to describe the stress–strain curve of rock. By comparing the Hoek–Brown (H–B) and Mohr–Coulomb (M–C) yield criterion, the equivalent M–C yield criterion is selected as the strength criterion in this model. To better characterize the rock damage and failure processes with considering the relationship between damage and deformation, the concept of yield stress ratio is introduced to describe the yield-strengthening deformation before rock peak stress. Damage events are described by two cumulative damage evolution laws. The evolution equations of tensile and shear damage are presented based on the equivalent plastic strains, and the maximum value between tensile and shear damage represents the total damage for rock. Considering that rock cannot bear tensile load after tensile failure but still has a certain shear strength, its tensile and shear strengths are small after shear failure. The elastic modulus is affected by tensile damage, whereas the angle of internal friction, the cohesion, and dilation angles are influenced by shear damage. The proposed damage-softening model describes the strain softening, brittle stress drop, and residual strength of rock after peak stress, and finally the model is implemented in FLAC3D. Comparing the test and the numerical calculation results, the damage-softening model better describes the total stress–strain curve of rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

D :

Damage variable

D t :

Tensile damage

D s :

Shear damage

E′:

Elastic modulus at yield strengthening stage

E, E s :

Young’s modulus

E 0 :

Initial value of elastic modulus

K, G :

Bulk and shear modulus

k 1 :

Ratio of yield stress to peak strength

k 2 :

Ratio of elastic modulus at yield strengthening stage to Young’s modulus

H–B:

Hoek–Brown yield criterion

M–C:

Mohr–Coulomb yield criterion

m i :

Dimensionless empirical constant

f s :

Shear yield plane

g t :

Tensile yield plane

h :

Boundary plane between shear and tensile yield plane

T:

Tensile

T–S:

Tensile–shear

C–S:

Compressive–shear

c :

Cohesion

c′:

Equivalent cohesion

c p :

Cohesion at peak strength point

c r :

Cohesion at residual strength stage

φ :

Angle of internal friction

φ′:

Equivalent internal friction angle

φ p :

Angle of internal friction at peak strength point

φ r :

Angle of internal friction at residual strength stage

ψ :

Dilation angle

σ 1, σ 3 :

Major and minor principal stresses

σ c :

Uniaxial compressive strength of rock

σ 3max :

The maximum confining pressure

σ t :

Tensile strength

σ yield :

Yield stress

σ peak :

Peak stress

σ t :

Tensile strength

σ t0 :

Initial value of tensile strength

ε ps :

Equivalent shear plastic strain

ε pt :

Equivalent tensile plastic strain

ε psL :

Critical equivalent plastic strain of rock entering the residual deformation stage

ω :

Shear strength parameter [i.e., fraction angle (φ), cohesion (c), and dilation angle (ψ)]

ω p :

Initial values of shear strength parameters

ω r :

Residual values of shear strength parameters

σ e I , σ e N :

Stress matrix of the unit before and after updating

ε I :

Strain matrix of the unit

D :

Stiffness matrix of the unit

\(\Delta\varvec{\varepsilon}_{ij}^{\text{ps}}\) :

Increment of shear plastic strain

\(\Delta\varvec{\varepsilon}_{ij}^{\text{pt}}\) :

Increment of tensile plastic strain

ΔK s :

Increment of equivalent shear plastic strain

ΔK t :

Increment of equivalent tensile plastic strain

References

  1. Miura, K., Okui, Y., Horii, H.: Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system. Mech. Mater. 35, 587–601 (2003)

    Article  Google Scholar 

  2. Lyons, K.D., Honeygan, S., Moroz, T.: NETL extreme drilling laboratory studies high pressure high temperature drilling phenomena. J. Energy Resour. Technol. 130, 791–796 (2007)

    Google Scholar 

  3. Barla, G.: Contributions to the understanding of time dependent behaviour in deep tunnels. Geomech. Tunn. 4, 255–265 (2011)

    Article  Google Scholar 

  4. Shafiei, A., Dusseault, M.B.: Geomechanics of thermal viscous oil production in sandstones. J. Pet. Sci. Eng. 103, 121–139 (2013)

    Article  Google Scholar 

  5. Holton, D., Myers, S., Carta, G., et al.: Application of a novel approach to assess the thermal evolution processes associated with the disposal of high-heat-generating waste in a geological disposal facility. Eng. Geol. 211, 102–119 (2016)

    Article  Google Scholar 

  6. Frantziskonis, G., Desai, C.S.: Elastoplastic model with damage for strain softening geomaterials. Acta Mech. 68, 151–170 (1987)

    Article  Google Scholar 

  7. Alonso, E., Alejano, L.R., Varas, F., et al.: Ground response curves for rock masses exhibiting strain-softening behaviour. Int. J. Numer. Anal. Methods Geomech. 27, 1153–1185 (2003)

    Article  MATH  Google Scholar 

  8. Lee, Y.K., Pietruszczak, S.: A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass. Tunn. Undergr. Space Technol. 23, 588–599 (2008)

    Article  Google Scholar 

  9. Li, X., Cao, W.G., Su, Y.H.: A statistical damage constitutive model for softening behavior of rocks. Eng. Geol. 143, 1–17 (2012)

    Article  Google Scholar 

  10. Krajcinovic, D., Fonseka, G.U.: The continuous damage theory of brittle materials, part 1: general theory. J. Appl. Mech. Trans. ASME 48, 809–815 (1981)

    Article  MATH  Google Scholar 

  11. Cao, W.G., Zhao, H., Li, X., et al.: Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Can. Geotech. J. 47, 857–871 (2010)

    Article  Google Scholar 

  12. Zhao, L.Y., Zhu, Q.Z., Xu, W.Y., et al.: A unified micromechanics-based damage model for instantaneous and time-dependent behaviors of brittle rocks. Int. J. Rock Mech. Min. Sci. 84, 187–196 (2016)

    Article  Google Scholar 

  13. Atkinson, B.K.: Subcritical crack propagation in rocks: theory, experimental results and applications. J. Struct. Geol. 4, 41–56 (1982)

    Article  Google Scholar 

  14. Fanella, D., Krajcinovic, D.: A micromechanical model for concrete in compression. Eng. Fract. Mech. 29, 49–66 (1988)

    Article  Google Scholar 

  15. Xie, N., Zhu, Q.Z., Xu, L.H., et al.: A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Comput. Geotech. 38, 970–977 (2011)

    Article  Google Scholar 

  16. Huang, Y., Shao, J.F.: A micromechanical analysis of time-dependent behavior based on subcritical damage in claystone. Int. J. Damage Mech. 22, 773–790 (2012)

    Article  Google Scholar 

  17. Zhou, X.P., Xia, E.M., Yang, H.Q., et al.: Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station. Theor. Appl. Fract. Mech. 57, 19–30 (2012)

    Article  Google Scholar 

  18. Feng, X.Q., Yu, S.W.: Micromechanical modelling of tensile response of elastic-brittle materials. Int. J. Solids Struct. 32, 3359–3372 (1995)

    Article  MATH  Google Scholar 

  19. Yang, S.Q., Tian, W.L., Huang, Y.H.: Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code. Geothermics 72, 124–137 (2018)

    Article  Google Scholar 

  20. Yang, S.Q., Hu, B.: Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments. Rock Mech. Rock Eng. 51, 2981–3004 (2018)

    Article  Google Scholar 

  21. Khan, D., Singh, S., Needleman, A.: Finite deformation analysis of crack tip fields in plastically compressible hardening–softening–hardening solids. Acta. Mech. Sin. 33, 148–158 (2017)

    Article  Google Scholar 

  22. Yang, S.Q., Huang, Y.H., Jing, H.W., et al.: Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng. Geol. 178, 28–48 (2014)

    Article  Google Scholar 

  23. Zhou, X.P., Zhang, Y.X., Ha, Q.L., et al.: Micromechanical modelling of the complete stress–strain relationship for crack weakened rock subjected to compressive loading. Rock Mech. Rock Eng. 41, 747–769 (2008)

    Article  Google Scholar 

  24. Swoboda, G., Yang, Q.: An energy-based damage model of geomaterials-I. Formulation and numerical results. Int. J. Solids Struct. 36, 1719–1734 (1999)

    Article  MATH  Google Scholar 

  25. Zhou, X.P., Yang, H.Q.: Micromechanical modeling of dynamic compressive responses of mesoscopic heterogeneous brittle rock. Theor. Appl. Fract. Mech. 48, 1–20 (2007)

    Article  Google Scholar 

  26. Ren, Z., Peng, X., Wan, L.: A three-dimensional micromechanics model for the damage of brittle materials based on the growth and unilateral effect of elliptic microcracks. Eng. Fract. Mech. 78, 274–288 (2011)

    Article  Google Scholar 

  27. Yu, M.H., Zan, Y.W., Zhao, J., et al.: A unified strength criterion for rock material. Int. J. Rock Mech. Min. Sci. 39, 975–989 (2002)

    Article  Google Scholar 

  28. Zhou, X.P., Shou, Y.D., Qian, Q.H., et al.: Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method. Int. J. Rock Mech. Min. Sci. 72, 54–60 (2014)

    Article  Google Scholar 

  29. Bi, J., Zhou, X.P., Qian, Q.H.: The 3D Numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads. Rock Mech. Rock Eng. 49, 1611–1627 (2016)

    Article  Google Scholar 

  30. Singh, M., Singh, B.: Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int. J. Rock Mech. Min. Sci. 48, 546–555 (2011)

    Article  Google Scholar 

  31. Nadai, A.: Theory of Flow and Fracture of Solids. McGraw Hill, New York (1950)

    Google Scholar 

  32. Jaeger, J.C., Cook, N.G.W.: Fundamentals of Rock Mechanics, 3rd edn. Chapman & Hall, London (1979)

    Google Scholar 

  33. Zhang, F., Sheng, Q., Zhu, Z.Q., et al.: Study on post-peak mechanical behaviour and strain-softening model of three gorges granite. Chin. J. Rock Mech. Eng. 27, 2651–2655 (2008). (in Chinese)

    Google Scholar 

  34. Yang, S.Q., Xu, W.Y., Su, C.D.: Study on the deformation failure and energy properties of marble specimen under triaxial compression. Eng. Mech. 24, 136–142 (2007). (in Chinese)

    Google Scholar 

  35. Zhang, C.H., Zhao, Q.S.: Triaxial tests of effects of varied saturations on strength and modulus for sandstone. Rock Soil Mech. 35, 951–958 (2014). (in Chinese)

    Google Scholar 

  36. Yang, Y.J., Song, Y., Chen, S.J.: Test study of coal’s strength and deformation characteristics under triaxial compression. J. China Coal Soc. 31, 150–153 (2006). (in Chinese)

    Google Scholar 

  37. Zhang, L.M., Wang, Z.Q., Li, H.F., et al.: Theoretical and experimental study on siltstone brittle stress drop in post-failure region. J. Exp. Mech. 23, 234–240 (2008). (in Chinese)

    Google Scholar 

  38. Yu, H.C., Li, Y.L.: Research on conventional triaxial compression test and constitutive model of silty mudstone. Yangtze River 42, 56–60 (2011). (in Chinese)

    Google Scholar 

  39. Detournay, E.: Elastoplastic model of a deep tunnel for a rock with variable dilatancy. Rock Mech. Rock Eng. 19, 99–108 (1986)

    Article  Google Scholar 

  40. Hoek, E., Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34, 1165–1186 (1997)

    Article  Google Scholar 

  41. Vermeer, P.A., Borst, R.: Non-associated plasticity for soils, concrete and rock. Heron 29, 1–64 (1984)

    Google Scholar 

  42. Kachanov, L.M.: Time of the rupture process under creep conditions. Izv Akad Nauk SSSR Otdelenie Tekniches 8, 26–31 (1958)

    Google Scholar 

  43. Lemaitre, J.: Evaluation of dissipation and damage in metals submitted to dynamic loading. In: Proceedings ICM-1, Kyoto, Japan (1971)

  44. Kyoya, T., Ichikawa, Y., Kawamoto, T.: Damage mechanics theory for discontinuous rock mass. In: Proceedings of 5th International Conference on Numerical Methods in Geomechanics, Nagoya, Apr 1–5 (1985)

  45. Dragon, A., Mroz, Z.: A continuum model for plastic–brittle behaviour of rock and concrete. Int. J. Eng. Sci. 17, 121–137 (1979)

    Article  MATH  Google Scholar 

  46. Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory-application to concrete. J. Eng. Mech. 115, 345–365 (1989)

    Article  Google Scholar 

  47. Hoek, E., Brown, E.T.: Underground Excavations in Rock. Institution of Mining and Metallurgy, London (1980)

    Google Scholar 

  48. Hoek, E., Brown, E.T.: Empirical strength criterion for rock masses. J. Geotech. Geoenviron. Eng. 106, 1013–1035 (1980)

    Google Scholar 

  49. Hoek, E., Martin, C.D.: Fracture initiation and propagation in intact rock—a review. J. Rock Mech. Geotech. Eng. 6, 287–300 (2014)

    Article  Google Scholar 

  50. Brace, W.F.: Brittle Fracture of Rocks. State of Stress in the Earth’s Crust, 111–174. American Elsevier, New York (1964)

    Google Scholar 

  51. Evert, H.: Strength of jointed rock masses. Geotechnique 23, 187–223 (1983)

    Google Scholar 

  52. Bobich, J.K.: Experimental analysis of the extension to shear fracture transition in Berea sandstone. M.S. thesis. Texas A and M University, Texas (2005)

  53. Hoek, E., Bieniawski, Z.T.: Brittle fracture propagation in rock under compression. Int. J. Fract. 1, 137–155 (1965)

    Article  Google Scholar 

  54. Hoek, E., Carranza-Torres C., Corkum. B.: Hoek–Brown failure criterion-2002 edition. In: Proceedings of the Fifth North American Rock Mechanics Symposium, vol. 1, pp. 18–22 (2002)

  55. Itasca Consulting Group, Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.0, and User’s Manual. Itasca Consulting Group, Inc., Minneapolis (2005)

  56. Xu, P., Yang, S.Q., Cheng, G.F.: Modified Burgers model of rocks and its experimental verification. J. China Coal Soc. 39, 1993–2000 (2014). (in Chinese)

    Google Scholar 

  57. Yang, S.Q., Jing, H.W., Li, Y.S., et al.: Experimental investigation on mechanical behavior of coarse marble under six different loading paths. Exp. Mech. 51, 315–334 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants 51734009 & 51179189), the Fifth “333” Project of Jiangsu Province (2016) and the China Postdoctoral Science Foundation (Grant 2018M642360). The authors would like to express their sincere gratitude to the editor and two anonymous reviewers for their valuable comments which have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Qi Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SQ., Hu, B. & Xu, P. Study on the damage-softening constitutive model of rock and experimental verification. Acta Mech. Sin. 35, 786–798 (2019). https://doi.org/10.1007/s10409-018-00833-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-00833-y

Keywords

Navigation