Skip to main content
Log in

High-temperature creep constitutional model of Q460E steel and effect of creep on bulging deformation of continuous casting slab

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Mechanical properties and creep behavior of Q460E continuous casting slab were studied by means of uniaxial tensile tests on a Gleeble-3800 thermomechanical simulator from 1000 to 1100 °C. The high-temperature creep constitutional equation was derived based on experimental data. The parameters in the equation were calculated by using the regression analysis inverse-estimation method. The experimental curves in the primary and secondary creep stages are fitted well. A three-dimensional elastic–plastic and creep finite element model was proposed in order to investigate the bulging deformation of slab and the bulging deformation at the beginning position of bending segment on the slab continuous casting machine was computed accurately. The results indicate that the maximum bulging deformation appears at the geometric center of the slab. The maximum value of the bulging deformation obtained by the elastic–plastic analysis is 1.301 mm. Considering the creep effect, the deformation increases to 1.827 mm which is about 1.4 times the value obtained by the elastic–plastic analysis. The calculation of bulging deformation using the elastic–plastic creep model is more reliable and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.A. Lanjewar, P. Tripathi, M. Singhai, P.K. Patra, J. Mater. Eng. Perform. 23 (2014) 3600–3609.

    Article  Google Scholar 

  2. H. Tomono, Ironmak. Steelmak. 42 (2015) 242–251.

    Article  Google Scholar 

  3. F. Pascon, A.M. Habraken, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2285–2299.

    Article  Google Scholar 

  4. M.O. El-Bealy, Ironmak. Steelmak. 40 (2013) 167–188.

    Article  Google Scholar 

  5. D.R.H. Jones, M.F. Ashby, Engineering materials 1: An introduction to properties, applications and design, Elsevier Science, New York, 2011.

    Google Scholar 

  6. N.S. Ottosen, M. Ristinmaa, The mechanics of constitutive modeling, Elsevier, Amsterdam, 2005.

    Google Scholar 

  7. X.Z. Zhang, L. Guo, ISIJ Int. 57 (2017) 76–83.

    Article  Google Scholar 

  8. L. Guo, X.Z. Zhang, C.X. Feng, J. Iron Steel Res. Int. 24 (2017) 595–600.

    Article  Google Scholar 

  9. K. Okamura, H. Kawashima, ISIJ Int. 29 (1989) 666–672.

    Article  Google Scholar 

  10. A. Grill, K. Schwerdtfeger, Ironmak. Steelmak. 6 (1979) 131–135.

    Google Scholar 

  11. J.S. Ha, J.R. Cho, B.Y. Lee, M.Y. Ha, J. Mater. Process. Technol. 113 (2001) 257–261.

    Article  Google Scholar 

  12. C.S. Li, B.G. Thomas, Metall. Mater. Trans. B 35 (2004) 1151–1172.

    Article  Google Scholar 

  13. S. Koric, B.G. Thomas, J. Mater. Process. Technol. 197 (2008) 408–418.

    Article  Google Scholar 

  14. T. Suzuki, K.H. Tacke, K. Wunnenberg, K. Schwerdtgeger, Ironmak. Steelmak. 15 (1988) 90–100.

    Google Scholar 

  15. A.S. Mammar, D. Gruber, H. Harmuth, S. Jin, Ceram. Int. 42 (2016) 6791–6799.

    Article  Google Scholar 

  16. J. Brnic, G. Turkalj, M. Canadija, D. Lanc, J. Constr. Steel Res. 67 (2011) 1948–1952.

    Article  Google Scholar 

  17. J. Brnic, M. Canadija, G. Turkalj, D. Lanc, Bull. Mater. Sci. 33 (2010) 475–481.

    Article  Google Scholar 

  18. A.G. dos Reis, D.A.P. Reis, A.J. Abdalla, J. Otubo, Mater. Charact. 107 (2015) 350–357.

    Article  Google Scholar 

  19. M. Cowan, K. Khandelwal, Eng. Struct. 80 (2014) 426–434.

    Article  Google Scholar 

  20. Z.H. Dong, D.F. Chen, M.J. Long, X. Zhang, J.L. Shen, Chin. J. Mater. Res. 27 (2013) 273–278.

    Google Scholar 

  21. H.S. Di, X.D. Kang, G.D. Wang, X.H. Liu, J. Northeast. Univ. Nat. Sci. 25 (2004) 40–43.

    Google Scholar 

  22. H. Xu, J. Yuan, Y.Z. Ni, J. Mater. Sci. Eng. 31 (2013) 568–571.

    Google Scholar 

  23. C.S. Liu, T.W. Yang, W.H. Wu, Scripta Mater. 37 (1997) 425–429.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51275446) and Hebei Provincial Natural Science Foundation of China (E2016203492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Sui, Yh. & Zhang, Xz. High-temperature creep constitutional model of Q460E steel and effect of creep on bulging deformation of continuous casting slab. J. Iron Steel Res. Int. 25, 1123–1130 (2018). https://doi.org/10.1007/s42243-018-0169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0169-1

Keywords

Navigation