Skip to main content
Log in

Advances and applications on microfluidic velocimetry techniques

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The development and analysis of the performance of microfluidic components for lab-on-a-chip devices are becoming increasingly important because microfluidic applications are continuing to expand in the fields of biology, nanotechnology, and manufacturing. Therefore, the characterization of fluid behavior at the scales of micro- and nanometer levels is essential. A variety of microfluidic velocimetry techniques like micron-resolution Particle Image Velocimetry (μPIV), particle-tracking velocimetry (PTV), and others have been developed to characterize such microfluidic systems with spatial resolutions on the order of micrometers or less. This article discusses the fundamentals of established velocimetry techniques as well as the technical applications found in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ (1996) Bibliography of particle image velocimetry using imaging methods: 1917–1995. University of Illinois at Urbana-Champaign, Urbana, IL

    Google Scholar 

  • Adrian RJ (2005) 20 years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Anderson EJ, Falls TD et al (2006) The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Biomed Eng Online 5:27

    Google Scholar 

  • Bitsch L, Olesen LH et al (2003) Micro PIV on blood flow in a microchannel. 7th international conference on miniaturized chemical and biochemical analysis systems. Squaw Valley, CA

  • Bitsch L, Olesen LH et al (2005) Micro particle-image velocimetry of bead suspensions and blood flows. Exp Fluids 39(3):505–511

    Article  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge [England]; Cambridge University Press, New York

  • Bourdon CJ, Olsen MG et al (2004) Validation of analytical solution for depth of correlation in microscopic particle image velocimetry. Meas Sci Technol 15:318–327

    Article  Google Scholar 

  • Bourdon CJ, Olsen MG et al (2006) The depth of correlation in micro-PIV for high numerical aperture and immersion objectives. J Fluid Eng 128(4):883–886

    Article  Google Scholar 

  • Bown MR, MacInnes JM et al (2006) Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV. Meas Sci Technol 17(8):2175–2185

    Article  Google Scholar 

  • Brown MR, Meinhart C (2006) AC electroosmotic flow in a DNA concentrator. Microfluid Nanofluid 2:513–523

    Article  Google Scholar 

  • Chamarthy P, Garimella SV et al (2009) Non-intrusive temperature measurement using microscale visualization techniques. Exp Fluids 47:159–170

    Article  Google Scholar 

  • Chuang HS, Wereley ST (2007) In vitro wall shear stress measurements for microfluid flows by using second-order SPE micro-PIV. Proceedings of IMECE2007, 2007 ASME international mechanical engineering congress and exposition. ASME, Seattle, WA, USA

  • Cowen EA, Monismith SG (1997) A hybrid digital particle tracking velocimetry technique. Exp Fluids 22:199–211

    Article  Google Scholar 

  • Csendes A, Szekely V et al (1996) Thermal mapping with liquid crystal method. Microelectron Eng 31:281–290

    Article  Google Scholar 

  • Curtin DM, Newport DT et al (2006) Utilising μ-PIV and pressure measurements to determine the viscosity of a DNA solution in a microchannel. Exp Thermal Fluid Sci 30:843–852

    Article  Google Scholar 

  • Dabiri D (2009) Digital particle image thermometry/velocimetry: a review. Exp Fluids 46:191–241

    Article  Google Scholar 

  • Devasenathipathy S, Santiago JG (2002) Particle tracking techniques for electrokinetic microchannel flows. Anal Chem 74:3704–3713

    Article  Google Scholar 

  • Devasenathipathy S, Santiago JG et al (2003) Particle imaging techniques for microfabricated fluidic systems. Exp Fluids 34(4):504–514

    Google Scholar 

  • Dubsky S, Fouras A et al (2008) Three component, three dimensional X-ray particle image velocimetry using multiple projections. 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, Portugal

  • Freudenthal PE, Pommer M et al (2007) Quantum nanospheres for sub-micron particle image velocimetry. Exp Fluids 43(4):525–533

    Article  Google Scholar 

  • Fujisawa N, Funatani S et al (2005) Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh-Bernard convection. Exp Fluids 38(3):291–303

    Article  Google Scholar 

  • Gomez R, Bashir R et al (2001) Microfluidic biochip for impedance spectroscopy of biological species. Biomed Microdevices 3(3):201–209

    Article  Google Scholar 

  • Gorti VM, Shang H et al (2008) Immunoassays in nanoliter volume reactors using fluorescent particle diffusometry. Langmuir 24(6):2947–2952

    Article  Google Scholar 

  • Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816

    Article  Google Scholar 

  • Guasto JS, Breuer KS (2008) Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking. Exp Fluids 45:157–166

    Article  Google Scholar 

  • Guasto JS, Huang P et al (2006) Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Exp Fluids 41:869–880

    Article  Google Scholar 

  • Gui L, Lindken R et al (1997a) Phase-separated PIV measurements of the flow around systems of bubbles rising in water. ASME-FEDSM97-3103, ASME. New York, USA

  • Gui L, Merzkirch W et al (1997b) Evaluation of low image density PIV recordings with the MQD method and application to the flow in a liquid bridge. J Flow Visual Image Process 4(4):333–343

    Google Scholar 

  • Hagsater SM, Westergaard CH et al (2008) A compact viewing configuration for stereoscopic micro-PIV utilizing mm-sized mirrors. Exp Fluids 45:1015–1021

    Article  Google Scholar 

  • Han G, Breuer KS (2001) Infrared PIV for measurement of fluid and solid motion inside opaque silicon microdevices. Proceedings of 4th international symposium on particle image velocimetry. Gttingen, Germany

  • Hirono T, Arimoto H et al (2008) Microfluidic image cytometry for measuring number and sizes of biological cells flowing through a microchannel using the micro-PIV technique. Meas Sci Technol 19(2):025401-1–025401-13

    Google Scholar 

  • Hoffmann M, Schluter M et al (2006) Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem Eng Sci 61:2968–2976

    Article  Google Scholar 

  • Hohenegger C, Mucha PJ (2007) Statistical reconstruction of velocity profiles for nanoparticle image velocimetry. Siam J Appl Math 68(1):239–252

    Article  MATH  MathSciNet  Google Scholar 

  • Hohreiter V, Wereley ST et al (2002) Cross-correlation analysis for temperature measurement. Meas Sci Technol 13(7):1072–1078

    Article  Google Scholar 

  • Hove JR, Koster RW et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177

    Article  Google Scholar 

  • Huang H, Dabiri D et al (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:1427–1440

    Article  Google Scholar 

  • Ichiyanagi M, Sato Y et al (2007) Optically sliced measurement of velocity and pH distribution in microchannel. Exp Fluids 43:425–435

    Article  Google Scholar 

  • Ichiyanagi M, Sasaki S et al (2009) Micro-PIV/LIF measurements on electrokinetically driven flow in surface modified microchannels. J Micromech Microeng 19:045021

    Article  Google Scholar 

  • Jin S, Huang P et al (2004) Near-surface velocimetry using evanescent wave illumination. Exp Fluids 37:825–833

    Article  Google Scholar 

  • Jones BJ, Lee P-S et al (2008) Infrared micro-particle image velocimetry measurements and predictions of flow distribution in a microchannel heat sink. Int J Heat Mass Transfer 51:1877–1887

    Article  Google Scholar 

  • Joseph P, Tabeling P (2005) Direct measurement of the apparent slip length. Phys Rev E 71(3):035303

    Google Scholar 

  • Kähler CJ, Scholz U et al (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341

    Article  Google Scholar 

  • Karri S, Charonko J et al (2009) Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Meas Sci Technol 20:045401

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49(3):191–215

    Article  Google Scholar 

  • Kihm KD, Banerjee A et al (2004) Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Exp Fluids 37:811–824

    Article  Google Scholar 

  • Kim MJ, Breuer KS (2007) Use of bacterial carpets to enhance mixing in microfluidic systems. J Fluid Eng 129:319–324

    Article  Google Scholar 

  • Kim HJ, Kihm KD (2002) Two-color (Rh-B & Rh-110) laser induced fluorescence (LIF) thermometry with sub-millimeter measurement resolution. J Heat Transfer-Trans Asme 124(4):596–596

    Article  Google Scholar 

  • Kim GB, Lee SJ (2006) X-ray PIV measurements of blood flows without tracer particles. Exp Fluids 41:195–200

    Article  Google Scholar 

  • Kinoshita H, Kaneda S et al (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7:338–346

    Article  Google Scholar 

  • Klank H, Goranovic G et al (2002) PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour. J Micromech Microeng 12(6):862–869

    Article  Google Scholar 

  • Kumar A, Williams SJ et al (2008) Experiments on opto-electrically generated microfluidic vortices. Microfluid Nanofluidics. doi:10.1007/s10404-008-0339-8

  • Lee SJ, Kim GB (2003) X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J Appl Phys 94(5):3620–3623

    Article  Google Scholar 

  • Lee SJ, Kim GB (2005) Synchrotron microimaging technique for measuring the velocity fields of real blood flows. J Appl Phys 97(6):064701

    Google Scholar 

  • Lee SJ, Kim S (2008a) Micro holographic PTV measurements of Dean flows in a curved micro-tube. 14th international symposium of laser techniques to fluid mechanics. Lisbon, Portugal

  • Lee SJ, Kim Y (2008b) In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging. Ann Bot 101(4):595–602

    Article  Google Scholar 

  • Lee JY, Ji HS et al (2007) Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos. Physiol Meas 28(10):1149–1162

    Article  Google Scholar 

  • Leonardo RD, Leach J et al (2006) Multipoint holographic optical velocimetry in microfluidic systems. Phys Rev Lett 96:134502

    Article  Google Scholar 

  • Li HF, Sadr R et al (2006) Multilayer nano-particle image velocimetry. Exp Fluids 41:185–194

    Article  Google Scholar 

  • Lima R, Wada S et al (2006) Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas Sci Technol 17:797–808

    Article  Google Scholar 

  • Lima R, Wada S et al (2007) In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. J Biomech 40(12):2752–2757

    Article  Google Scholar 

  • Lima R, Ishikawa T et al (2008a) Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. J Biomech 41(10):2188–2196

    Article  Google Scholar 

  • Lima R, Wada S et al (2008b) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10(2):153–167

    Article  Google Scholar 

  • Lin D, Angarita-Jaimes NC et al (2008) Three-dimensional particle imaging by defocusing method with an annular aperture. Opt Lett 33:905–907

    Article  Google Scholar 

  • Lindken R, Westerweel J et al (2005) Development of a self-calibrating stereo-μ-PIV system and its application to the three-dimensional flow in a T-shaped mixer. 6th international symposium on particle image velocimetry. Pasadena, CA

  • Lindken R, Westerweel J et al (2006) Stereoscopic micro particle image velocimetry. Exp Fluids 41:161–171

    Article  Google Scholar 

  • Lindken R, Rossi M, et al (2009) Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab Chip

  • Liu D, Garimella SV et al (2005) Infrared micro-particle image velocimetry in silicon-based microdevices. Exp Fluids 38:385–392

    Article  Google Scholar 

  • Long DS, Smith ML et al (2004) Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc Natl Acad Sci USA 101(27):10060–10065

    Article  Google Scholar 

  • Lu HW, Bottausci F et al (2008) PIV investigation of 3-dimensional flow in drops actuated by EWOD. 21st IEEE international conference on micro electro mechanical systems (MEMS 2008). Tucson, AZ

  • Malsch D, Kielpinski M et al (2008) μPIV-analysis of Taylor flow in micro channels. Chem Eng J 135S:S166–S172

    Article  Google Scholar 

  • Meinhart CD, Zhang HS (2000) The flow structure inside a microfabricated inkjet printhead. J Microelectromech Syst 9(1):67–75

    Article  Google Scholar 

  • Meinhart CD, Wereley ST et al (1999) PIV measurements of a microchannel flow. Exp Fluids 27(5):414–419

    Article  Google Scholar 

  • Meinhart CD, Wereley ST et al (2000a) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11(6):809–814

    Article  Google Scholar 

  • Meinhart CD, Wereley ST et al (2000b) A PIV algorithm for estimating time-averaged velocity fields. J Fluid Eng 122(2):285–289

    Article  Google Scholar 

  • Meinhart C, Wang DZ et al (2003) Measurement of AC electrokinetic flows. Biomed Microdevices 5:139–145

    Article  Google Scholar 

  • Muwanga R, Hassan I (2006) Local heat transfer measurements on a curved microsurface using liquid crystal thermography. J Thermophys Heat Transfer 20:884–894

    Article  Google Scholar 

  • Natrajan VK, Christensen KT (2009) Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas Sci Technol 20(1):015401

    Google Scholar 

  • Neve N, Lingwood JK et al (2008) The μPIVOT: an integrated particle image velocimeter and optical tweezers instrument for microenvironment investigations. Meas Sci Technol 19(9):095403

    Google Scholar 

  • Olsen MG (2009) Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry. Meas Sci Technol 20(1):015402.1–015402.9

    Google Scholar 

  • Olsen MG, Adrian RJ (2000a) Brownian motion and correlation in particle image velocimetry. Opt Laser Technol 32(7–8):621–627

    Article  Google Scholar 

  • Olsen MG, Adrian RJ (2000b) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 29(7):S166–S174

    Article  Google Scholar 

  • Olsen MG, Bourdon CJ (2003) Out-of-plane motion effects in microscopic particle image velocimetry. J Fluids Eng-Trans Asme 125(5):895–901

    Article  Google Scholar 

  • Olsen MG, Bourdon CJ (2007) Random error due to Brownian motion in microscopic particle image velocimetry. Meas Sci Technol 18(7):1963–1972

    Article  Google Scholar 

  • Park JS, Kihm KD (2006a) Three-dimensional micro-PTV using deconvolution microscopy. Exp Fluids 40:491–499

    Article  Google Scholar 

  • Park JS, Kihm KD (2006b) Use of confocal laser scanning microscopy (CLSM) for depthwise resolved microscale-particle image velocimetry (mu-PIV). Opt Lasers Eng 44(3–4):208–223

    Article  Google Scholar 

  • Park CW, Kim GB et al (2004a) Micro-PIV measurements of blood flow in a microchannel. Conference on optical and diagnostics and sensing IV. San Jose, CA

  • Park JS, Choi CK et al (2004b) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37(1):105–119

    Article  Google Scholar 

  • Park JS, Choi CK et al (2005) Temperature measurement for a nanoparticle suspension by detecting the Brownian motion using optical serial sectioning microscopy (OSSM). Meas Sci Technol 16(7):1418–1429

    Article  MathSciNet  Google Scholar 

  • Pereira F, Lu J et al (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42(4):589–599

    Article  Google Scholar 

  • Petermeier H, Kowalczyk W et al (2007) Detection of microorganismic flows by linear and nonlinear optical methods and automatic correction of erroneous images artefacts and moving boundaries in image generating methods by a neuronumerical hybrid implementing the Taylor’s hypothesis as a priori knowledge. Exp Fluids 42(4):611–623

    Article  Google Scholar 

  • Peterson SD, Chuang HS et al (2008) Three-dimensional particle tracking using micro-particle image velocimetry hardware. Meas Sci Technol 19(11):115406.1–115406.8

    Google Scholar 

  • Poelma C, Vennemann P et al (2008) In vivo blood flow and wall shear stress measurements in the vitelline network. Exp Fluids 45:703–713

    Article  Google Scholar 

  • Poelma C, Heiden KVd et al (2009) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7(42):91–103

    Article  Google Scholar 

  • Pommer MS, Meinhart CD (2005) Shear-stress distribution surrounding individual adherent red cells in a microchannel measured using Micro-PIV. 6th international symposium on particle image velocimetry. Pasadena, CA

  • Pommer MS, Kiehl AR et al (2007) A 3D-3C micro-PIV method. IEEE international conference of nano/micro engineered and molecular systems. Bangkok, Thailand

  • Pouya S, Koochesfahani M et al (2005) Single quantum dot (QD) imaging of fluid flow near surfaces. Exp Fluids 39(4):784–786

    Article  Google Scholar 

  • Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60

    Article  Google Scholar 

  • Raffel M, Gharib M et al (1995) Feasibility study of three-dimensional PIV by correlating images of particles within parallel light sheet planes. Exp Fluids 19:69–77

    Article  Google Scholar 

  • Raffel M, Willert CE et al (2007) Particle image velocimetry: a practical guide. Springer, Berlin, New York

    Google Scholar 

  • Ravnic DJ, Zhang Y-Z et al (2006) Multi-image particle tracking velocimetry of the microcirculation using fluorescent nanoparticles. Microvasc Res 72:27–33

    Article  Google Scholar 

  • Robinson O, Rockwell D (1993) Construction of three-dimensional images of flow structure via particle tracking techniques. Exp Fluids 14:257–270

    Article  Google Scholar 

  • Ross D, Locascio LE (2003) Fluorescence thermometry in microfluidics. Temperature: its measurement and control in science and industry, vol 7

  • Ross D, Gaitan M et al (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73(17):4117–4123

    Article  Google Scholar 

  • Rossi M, Ekeberg I et al (2006) In vitro study of shear stress over endothelial cells by Micro Particle Image Velocimetry (μPIV). 13th Int. Symp Appl. laser techniques to fluid mechanics. Lisbon, Portugal

  • Rossi M, Lindken R et al (2008) Single-cell level measurement of shape, shear stress distribution and gene expression of endothelial cells in microfluidic chips. 6th international conference on nanochannels, microchannels, and minichannels. Darmstadt, Germany

  • Sadr R, Yoda M et al (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367

    Article  MATH  Google Scholar 

  • Sadr R, Li HF et al (2005) Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Exp Fluids 38(1):90–98

    Article  Google Scholar 

  • Sadr R, Yoda M et al (2006) Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl Phys Lett 89(4):044103

    Google Scholar 

  • Sadr R, Hohenegger C et al (2007) Diffusion-induced bias in near-wall velocimetry. J Fluid Mech 577:443–456

    Article  MATH  Google Scholar 

  • Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp Fluids 26(1–2):7–15

    Article  Google Scholar 

  • Santiago JG, Wereley ST et al (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319

    Article  Google Scholar 

  • Satake S, Kunugi T et al (2005) Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry. Opt Rev 12(6):442–444

    Article  Google Scholar 

  • Satake S, Kunugi T et al (2006) Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry. Meas Sci Technol 17:1647–1651

    Article  Google Scholar 

  • Sato Y, Irisawa G et al (2004) Visualization of convective mixing in microchannel by fluorescence imaging. Meas Sci Technol 14:114–121

    Article  Google Scholar 

  • Sheng J, Malkiel E et al (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45(16):3893–3901

    Article  Google Scholar 

  • Shinohara K, Sugii Y et al (2004) High-speed micro-PIV measurements of transient flow in microfluidic devices. Meas Sci Technol 15:1965–1970

    Article  Google Scholar 

  • Shinohara K, Sugii Y et al (2005) Development of a three-dimensional scanning microparticle image velocimetry system using a piezo actuator. Rev Sci Instrum 76:106109

    Article  Google Scholar 

  • Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1(1):2–21

    Article  Google Scholar 

  • Song H, Chen DL et al (2006) Reactions in droplets in microflulidic channels. Angew Chem Int Ed 45(44):7336–7356

    Article  MathSciNet  Google Scholar 

  • Speidel M, Jonas A et al (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28(2):69–71

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Sugii Y, Nishio S et al (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23(2):403–416

    Article  Google Scholar 

  • Sugii Y, Okuda R et al (2005) Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas Sci Technol 16(5):1126–1130

    Article  Google Scholar 

  • Tanaami T, Otsuki S et al (2002) High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl Opt 41(22):4704–4708

    Article  Google Scholar 

  • Tangelder GJ, Slaaf DW et al (1986) Velocity profiles of blood-platelets and red-blood-cells flowing in arterioles of the rabbit mesentery. Circ Res 59(5):505–514

    Google Scholar 

  • Tien W, Kartes P et al (2008) A color-coded backlighted defocusing digital particle image velocimetry system. Exp Fluids 44:1015–1026

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys Fluids 16(5):1509–1515

    Article  Google Scholar 

  • Vennemann P, Kiger K et al (2005) In vivo micro PIV in the embryonic avian heart. 6th international symposium on particle image velocimetry. Pasadena, CA, USA

  • Vennemann P, Kiger KT et al (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39(7):1191–1200

    Article  Google Scholar 

  • Vennemann P, Lindken R et al (2007) In vivo whole-field blood velocity measurement techniques. Exp Fluids 42:495–511

    Article  Google Scholar 

  • Wang DZ, Sigurdson M et al (2005) Experimental analysis of particle and fluid motion in ac electrokinetics. Exp Fluids 38(1):1–10

    Article  Google Scholar 

  • Wang C, Nguyen NT et al (2007) Optical measurement of flow field and concentration field inside a moving nanoliter droplet. Sens Actuators A 133:317–322

    Article  Google Scholar 

  • Wereley ST, Gui L (2003) A correlation-based central difference image correction (CDIC) method and application in a four-roll mill flow PIV measurement. Exp Fluids 34:42–51

    Google Scholar 

  • Wereley ST, Meinhart CD (2001) Adaptive second-order accurate particle image velocimetry. Exp Fluids 31(3):258–268

    Article  Google Scholar 

  • Wereley ST, Gui L et al (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055

    Article  Google Scholar 

  • Wereley ST, Meinhart C et al (2005) Single pixel evaluation of microchannel flows. Proceedings of IMECE2005, 2007 ASME international mechanical engineering congress and exposition. Orlando, FL, USA, ASME

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247

    Article  Google Scholar 

  • Westerweel J, Geelhoed PF et al (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37(3):375–384

    Article  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

  • Willert CE, Gharib M (1992) 3-Dimensional particle imaging with a single camera. Exp Fluids 12(6):353–358

    Article  Google Scholar 

  • Wu MM, Roberts JW et al (2005) Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids 38(4):461–465

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mat Sci 28:153–184

    Article  Google Scholar 

  • Yoon SY, Kim KC (2006) 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept. Meas Sci Technol 17(11):2897–2905

    Article  Google Scholar 

  • Zettner CM, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34(1):115–121

    Google Scholar 

  • Zhu LD, Tretheway D et al (2005) Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method. J Comput Phys 202(1):181–195

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Wereley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, S.J., Park, C. & Wereley, S.T. Advances and applications on microfluidic velocimetry techniques. Microfluid Nanofluid 8, 709–726 (2010). https://doi.org/10.1007/s10404-010-0588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0588-1

Keywords

Navigation