Skip to main content
Log in

Detection of microorganismic flows by linear and nonlinear optical methods and automatic correction of erroneous images artefacts and moving boundaries in image generating methods by a neuronumerical hybrid implementing the Taylor’s hypothesis as a priori knowledge

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In biological fluid mechanics powerful imaging methods for flow analysis are required for making progress towards a better understanding of natural phenomena being optimised in the course of evolution. At the same time it is of crucial importance that the measuring and flow visualisation techniques employed guarantee biocompatibility, i.e. they do not distort the behaviour of biosystems. Unfortunately, this restricts seriously the measures for optimising the image generation in comparison to other flow fields in which no biological systems are present. As a consequence, images of lower quality leading to erroneous artefacts are obtained. Thus, either novel detection techniques that are able to overcome these disadvantages or advanced evaluation methods enabling the sophisticated analysis and description of flow fields are essential. In the present contribution, both areas are covered. A novel so-called neuronumerical hybrid allows to detect artefacts in conventional experimental particle image velocimetry (PIV) data of microorganismic flow fields generated by ciliates. The handling of artefacts is performed by the hybrid using a priori knowledge of the flow physics formulated in numerical expressions and the enormous potential of artificial neural networks in predicting artefacts and correcting them. In fact, the neuronumerical hybrid based on the physical knowledge provided by the Taylor’s hypothesis can detect not only spurious velocity vectors but also additional phenomena like a moving boundary, in the present case caused by the contraction of the zooid of a microorganism. Apart from the detection of the artefacts, a correction of the spurious velocity vectors is possible. Furthermore, a method to detect microscopic velocity fields based on nonlinear optical filtering, optical novelty filter (ONF) is presented. On the one hand, it can be employed to expose phase changes in flow fields directly from the nonlinear response and without additional tracers. On the other hand, it can be used to preprocess low quality images of flow fields loaded with particles and extract the motion of particles with an enhanced contrast. The flow fields obtained by the correlation based PIV method of the ONF filtered and unfiltered image sequences are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-image techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Anderson DZ, Feinberg J (1989) Optical novelty filters. IEEE J Quantum Electron 25:635–647

    Article  Google Scholar 

  • Anderson DZ, Lininger DM and Feinberg J (1987) Optical tracking novelty filter. Opt Lett 12:123–125

    Google Scholar 

  • Benning R, Becker T, Delgado A (2001) Initial studies of predicting flow fields with an ANN hybrid. Adv Eng Softw 32:895–901

    Article  MATH  Google Scholar 

  • Blake JR, Otto SR (1996) Ciliary propulsion, chaotic filtration and a blinking stokeslet. J Eng Math 30:151–168

    Article  MATH  MathSciNet  Google Scholar 

  • Delgado A, Nirschl H, Becker T (1996) First use of cognitive algorithms in investigations under compensated gravity. Micrograv Sci Technol IX(3):185–192

    Google Scholar 

  • Díez L, Zima BE, Kowalczyk W, Delgado A (2006) Investigation of multiphase flow in Sequencing Batch Reactor (SBR) by means of hybrid methods. Chem Sci Eng (in press)

  • Eisenmann H, Letsiou I, Feuchtinger A, Beisker W, Mannweiler E, Hutzler P, Arnz P (2001) Interception of small particles by flocculent structures, sessile ciliates, and the basic layer of a wastewater biofilm. Appl Environ Microbiol 67:4286–4292

    Article  Google Scholar 

  • Fellner M, Delgado A, Becker T (2003) Functional neurons in dynamical neural networks for bioprocess modelling. Bioprocess Biosyst Eng 25:263–270

    Google Scholar 

  • Foissner W, Berger H, Kohmann F (1992) Taxonomische und ökologische revision der Ciliaten des Saprobiensystems—band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, Heft 5/92, München

  • Fried J, Lemmer H, (2003) On the dynamics and function of ciliates in sequencing batch biofilm reactors (SBBR). Water Sci Technol 47: 189–196

    Google Scholar 

  • van Ginneken V, Antonissen E, Müller UK, Booms R, Eding E, Verreth J, van den Thillart G (2005) Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J Exp Biol 208:1329–1335

    Article  Google Scholar 

  • Hartmann C, Özmutlu Ö, Petermeier H, Fried J, Delgado A (2006) Analysis of the flow field induced by the sessile peritrichous ciliate Opercularia asymmetrica. J Biomech (in press)

  • Holtmann F, Krishnamachari VV, Grothe O, Deitmar H, Eversloh M, Wördemann M, Denz C (2006a) Measurement of density changes in fluid flow by an optical nonlinear filtering technique. In: 12th International symposium on flow visualisation (ISFV 2006)

  • Holtmann F, Wördemann M, Eversloh M, Grothe O, Deitmar H, Krishnamachari VV, Denz C (2006b) Echtzeitbestimmung von Geschwindigkeits- und Dichtefeldern in Mikroströmungen mit Hilfe optisch nichtlinearer. In: Proceedings 14. GALA 2006, Braunschweig 5.-7.9.2006

  • Krishnamachari VV, Denz C (2003) Real-time phase measurement with a photorefractive novelty filter microscope. J Opt A Pure Appl Opt 5:239–243

    Article  Google Scholar 

  • Krishnamachari VV, Denz C (2004), A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope. Appl Phys B Lasers Opt 79:497–501

    Google Scholar 

  • Krishnamachari VV, Grothe O, Deitmar H, Denz C (2005) Novelty filtering with a photorefractive lithium–niobate crystal. Appl Phys Lett 87:071105

    Article  Google Scholar 

  • Liang DF, Jiang CB, Li YL (2003) Cellular neural network to detect spurious vectors in PIV data. Exp Fluids 34:52–62

    Google Scholar 

  • Orme BA, Blake JR, Otto SR (2003) Modelling the motion of particles around choanoflagellates. J Fluid Mech 475:333–355

    Article  MATH  Google Scholar 

  • Otto SR, Yannacopoulos AN, Blake JR (2001) Transport and mixing in Stokes flow: the effect of chaotic dynamics on the blinking stokeslet. J Fluid Mech 430:1–26

    Article  MATH  Google Scholar 

  • Petermeier H, Delgado A (2006) ANNalyzer basierend auf der Taylor-Hypothese zur Stützung eines Bildauswerteverfahrens für mikroorganismische Strömungen. In: Proceedings 14. GALA 2006, Braunschweig 5.-7.9.2006

  • Petermeier H, Benning R, Delgado A, Kulozik U, Hinrichs J, Becker T (2002) Hybrid model of the fouling process in tubular heat exchangers for the dairy industry. J Food Eng 55:9–17

    Article  Google Scholar 

  • Petermeier H, Baars A, Delgado A (2005) "ANNalyzer“—neurohybride Stützung eines Bildauswerteverfahrens, angewendet auf mikroorganismisch generierte Strömungen. In: Proceedings 13. GALA 2005, S. 12.55-1-12.55-6, Cottbus 6.-8.9.2005

  • Petermeier H, Delgado A, Kondratieva P, Westermann R, Holtmann F, Krishnamachari V, Denz C (2006) Hybrid approach between experiment and evaluation for artefact detection and flow field reconstruction—a novel approach exemplified on microorganismic induced fluid flows. In: 12th International symposium on flow visualization (ISFV 2006) (in press)

  • Raffel M, Willert Ch E, Kompenhans J (1998) Particle image velocimetry. A practical guide. Springer, Berlin

  • Rojas R (1996) Neural networks—a systematic introduction. Springer, Berlin

  • Sedlatschek M, Trumpfheller J, Hartmann J, Müller M, Denz C, Tschudi T (1999) Differentiation and subtraction of amplitude and phase images using a photorefractive novelty filter. Appl Phys B Lasers Opt 68:1047–1054

    Article  Google Scholar 

  • Sleigh MA, Barlow D (1976) Collection of food by vorticella. Trans Am Micros Soc 95:482–486

    Article  Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Foundation (DFG), projects DE 643/10-1, DE 643/10-2 and DE 486/14-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Petermeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petermeier, H., Kowalczyk, W., Delgado, A. et al. Detection of microorganismic flows by linear and nonlinear optical methods and automatic correction of erroneous images artefacts and moving boundaries in image generating methods by a neuronumerical hybrid implementing the Taylor’s hypothesis as a priori knowledge. Exp Fluids 42, 611–623 (2007). https://doi.org/10.1007/s00348-007-0269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0269-3

Keywords

Navigation