Skip to main content
Log in

In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 μm wide, 45 μm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability. Advantages and disadvantages of PDMS microchannels over glass capillaries are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • R. Adrian, Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Google Scholar 

  • C. Alonso, A. Pries, O. Kiesslich, D. Lerche, P. Gaehtgens, Am. J. Physiol. 268(1 Pt 2), H25–H32 (1995)

    Google Scholar 

  • M. Baker, H. Wayland, Microvasc. Res. 7, 131–143 (1974)

    Article  Google Scholar 

  • D. Beebe, G. Mensing, G. Walker, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  Google Scholar 

  • L. Bitsch, L. Olesen, C. Westergaard, H. Bruus, H. Klank, J. Kutter, Exp. Fluids 39, 505–511 (2005)

    Article  Google Scholar 

  • J. Borenstein, H. Terai, K. King, E. Weinberg, M. Kaazempur-Mofrad, J. Vacanti, Biomedical Microdevices 4(3), 167–175 (2002)

    Article  Google Scholar 

  • G. Born, A. Melling, J. Whitelaw, Biorheology 15, 163–172 (1978)

    Google Scholar 

  • T. Brown, J. Biomech. 33, 3–14 (2000)

    Article  Google Scholar 

  • H. Bruus, Theoretical microfluidics (MIC, Technical University of Denmark, Denmark, 2004)

    Google Scholar 

  • G. Bugliarello, J. Hayden, Trans. Soc. Rheol. 7, 209–230 (1963)

    Article  Google Scholar 

  • C. Caro, T. Pedley, R. Schroter, W. Seed, The mechanics of the circulation (Oxford University Press, 1978)

  • W. Chang, D. Akin, M. Sedlak, M. Ladisch, R. Bashir, Biomedical Microdevices 5(4), 281–290 (2003)

    Article  Google Scholar 

  • S. Chien, S. Usami, R. Skalak, Blood flow in small tubes Handbook of Physiology – The cardiovascular system IV (1984) 217–249

  • T. Cochrane, J. Earnshaw, A. Love, Med. Biol. Eng. Comput. 19, 589–596 (1981)

    Article  Google Scholar 

  • C. Duffy, J. McDonald, O. Schueller, G. Whitesides, Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  • S. Einav, R. Berman, P. Fuhro, P. DiGiovanni, S. Fine, J. Fridman, Biorheology 12, 207–210 (1975)

    Google Scholar 

  • R. Fahraeus, T. Lindqvist, Am. J. Physiol. 96, 562–568 (1931)

    Google Scholar 

  • M. Faivre, M. Abkarian, K. Bickraj, H. Stone, Biorheology 43, 147–159 (2006)

    Google Scholar 

  • T. Fujii, Microelectron. Eng. 61–62, 907–914 (2002)

    Article  Google Scholar 

  • P. Gaehtgens, Biorheology 24, 367–376 (1987)

    Google Scholar 

  • P. Gaehtgens, H. Meiselman, H. Wayland, Microvasc. Res. 2, 13–23 (1970)

    Article  Google Scholar 

  • S. Gifford, M. Frank, J. Derganc, C. Gabel, R. Austin, T. Yoshida, W. Bitensky, Biophys. J. 84, 623–633 (2003)

    Article  Google Scholar 

  • H. Goldsmith, V. Turitto, Tromb. Haemost. 55, 415–435 (1986)

    Google Scholar 

  • H. Golster, M. Linden, S. Bertuglia, A. Colantuoni, G. Nilsson, F. Sjoberg, Microvasc. Res. 58, 62–73 (1999)

    Article  Google Scholar 

  • R. Gomez, R. Bashir, A. Sarikaya, M. Ladish, J. Sturgis, J. Robison, T. Geng, A. Bhunia, H. Apple, S. Wereley, Biomedical Microdevices 3(3), 201–209 (2001)

    Article  Google Scholar 

  • G. Holzapfel, G. Sommer, C. Gasser, P. Regitnig, Am. J. Physiol Heart Circ. Physiol. 289, H2048–H2058 (2005)

    Article  Google Scholar 

  • H. Kaji, T. Kawashima, M. Nishizawa, Langmuir 22, 10784–10787 (2006)

    Article  Google Scholar 

  • G.B. Kim, S.J. Lee, Exp Fluids 41, 195–200 (2006)

    Google Scholar 

  • H. Kinoshita, M. Oshima, S. Kaneda, T. Fujii, Proceedings of the 9thICMSCLS (Boston, Massachusetts, USA, 2005)

  • A. Koutsiaris, D. Mathioulakis, S. Tsangaris, Meas. Sci. Technol. 10, 1037–1046 (1999)

    Article  Google Scholar 

  • R. Lima, Analysis of the blood flow behavior through microchannels by confocal micro-PIV/PTV system, Doctoral thesis (Tohoku University, Japan, 2007)

    Google Scholar 

  • R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, Proceedings of the 3rd IASTED ICB—BioMech (Benidorm, Spain, 485, 2005)

  • R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, Meas. Sci. Technol. 17, 797–808 (2006)

    Article  Google Scholar 

  • R. Lima, S. Wada, M. Takeda, K. Tsubota, T. Yamaguchi, J. Biomech. 40, 2752–2757 (2007)

    Article  Google Scholar 

  • N. Maeda, Jpn. J. Physiol 46, 1–14 (1996)

    Article  Google Scholar 

  • A. Mata, A. Fleischman, S. Roy, Biomedical Microdevices 7(4), 281–293 (2005)

    Article  Google Scholar 

  • J. McDonald, G. Whitesides, Acc. Chem. Res 35(7), 491–499 (2002)

    Article  Google Scholar 

  • G. Mchedlishvili, N. Maeda, Jpn. J. Physiol 51, 19–30 (2001)

    Article  Google Scholar 

  • C. Meinhart, S. Wereley, J. Santiago, J. Fluids Eng 122, 285–289 (2000)

    Article  Google Scholar 

  • G. Minas, J. Martins, J. Ribeiro, R. Wolffenbuttel, J. Correia, Sens. Actuators 110, 33–38 (2004)

    Article  Google Scholar 

  • J. Moger, S. Matcher, C. Winlove, A. Shore, J. Biomed. Opt. 9(5), 982–994 (2004)

    Article  Google Scholar 

  • N. Mortensen, F. Okkels, H. Bruus, Phys. Rev. E 71, 1–4 (2005)

    Google Scholar 

  • A. Nakano, Y. Sugii, M. Minamiyama, H. Niimi, Clin. Hemorheol. Microcirc. 29, 445–455 (2003)

    Google Scholar 

  • N. Nguyen, S. Wereley, Fundamentals and applications of microfluidics (Artech House, Inc., Norwood, MA, 2002)

    MATH  Google Scholar 

  • J. Park, K. Kihm, Opt. Lasers Eng. 44, 208–223 (2006)

    Article  Google Scholar 

  • J. Park, C. Choi, K. Kihm, Exp. Fluids 37, 105–119 (2004)

    Google Scholar 

  • A. Parthasarathi, S. Japee, R. Pittman, Ann Biomed. Eng. 27, 313–325 (1999)

    Article  Google Scholar 

  • A. Pries, T. Secomb, Clin. Hemorheol. Microcirc. 29, 143–148 (2003)

    Google Scholar 

  • A. Pries, T. Secomb, T. Gessner, M. Sperandio, J. Gross, P. Gaehtgens, Circ. Res. 75, 904–915 (1994)

    Google Scholar 

  • M. Raffel, C. Willert, J. Kompenhans, Particle image velocimetry: a practical guide (Springer, Germany, 1998)

    Google Scholar 

  • Rika nenpyo, Chronological scientific tables, (National Astronomical Observatory), Maruzen Co., Japan, 1996

  • J. Santiago, S. Wereley, C. Meinhart, D. Beebe, R. Adrian, Exp Fluids 25, 316–319 (1998)

    Article  Google Scholar 

  • T. Secomb, Symp. Soc. Exp. Biol. vol 49 (London, UK, 1995), pp. 305–321

  • S. Shevkoplyas, S. Gifford, T. Yoshida, M. Bitensky, Microvasc. Res. 65, 132–136 (2003)

    Article  Google Scholar 

  • M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J. Vacanti, Biomedical Microdevices 6(4), 269–278 (2004)

    Article  Google Scholar 

  • H. Steiger, R. Aaslid, S. Keller, H. Reulen, Heart Vessels 5(1), 41–46 (1989)

    Article  Google Scholar 

  • N. Sutton, M. Tracey, I. Johnston, R. Greenaway, M. Rampling, Microvasc. Res. 53, 272–281 (1997)

    Article  Google Scholar 

  • Y. Suzuki, N. Tateishi, M. Soutani, N. Maeda, Microcirculation 3, 49–57 (1996)

    Article  Google Scholar 

  • P. Tabeling, Proceedings of the 14th Australasian Fluid Mechanics Conference (Adelaide, Australia, 2001)

  • S. Takayama, J. McDonald, E. Ostuni, M. Liang, P. Kenis, F. Ismagilov, G. Whitesides, Patterning cells and their environments using multiple laminar fluid flows in capillary networks Proc. Natl. Acad. Sci. 96, 5545–5548 (1999)

    Article  Google Scholar 

  • T. Tanaani, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, H. Ishida, Appl. Opt. 41(22), 4704–4708 (2002)

    Article  Google Scholar 

  • G. Tangelder, D. Slaaf, M. Muijtjens, T. Arts, M. Egbrink, R. Reneman, Circ. Res. 59, 505–514 (1986)

    Google Scholar 

  • T. Thorsen, S. Maerkl, S. Quake, Science 298, 580–584 (2002)

    Article  Google Scholar 

  • M. Toner, D. Irimia, Annu. Rev. Biomed. Eng. 7, 77–103 (2005)

    Article  Google Scholar 

  • K. Tsukada, H. Minamitami, E. Sekizuka, C. Oshio, Physiol. Meas. 21(4), 459–471 (2000)

    Article  Google Scholar 

  • W. Uijttewaal, E. Nijhof, R. Heethaar, J. Biomech. 27, 35–42 (1994)

    Article  Google Scholar 

  • M. Unger, H. Chou, T. Thorsen, A. Scherer, S. Quake, Science 288, 113–116 (2000)

    Article  Google Scholar 

  • P. Vennemann, K. Kiger, R. Lindken, B. Groenendijk, S. Stekelenburg-de Vos, T. Hagen, N. Ursem, R. Poelmann, J. Westerweel, B. Hierk, J. Biomech. 39, 1191–1200 (2006)

    Article  Google Scholar 

  • S. Wilhelm, B. Grobler, M. Gluch, H. Heinz, Confocal laser scanning microscopy: principles (Carl Zeiss, Germany, 2003)

    Google Scholar 

  • C. Willert, M. Raffel, J. Kompenhans, B. Stasicki, C. Kahler, Flow Meas. Instrum. 7, 247–256 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the following grants: International Doctoral Program in Engineering from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), “Revolutionary Simulation Software (RSS21)” next-generation IT program of MEXT; Grants-in-Aid for Scientific Research from MEXT and JSPS Scientific Research in Priority Areas (768) “Biomechanics at Micro- and Nanoscale Levels,” Scientific Research (A) No.16200031 “Mechanism of the formation, destruction, and movement of thrombi responsible for ischemia of vital organs”. The authors also thank all members of Esashi, Ono and Tanaka Lab. for their assistance in fabricating the PDMS microchannel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, R., Wada, S., Tanaka, S. et al. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10, 153–167 (2008). https://doi.org/10.1007/s10544-007-9121-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9121-z

Keywords

Navigation