Skip to main content
Log in

Microscale flow visualization

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Advances in microfluidic and nanofluidic technologies have been paralleled by advances in methods for direct optical measurement of transport phenomena on these scales. A variety of methods for microscale flow visualization have appeared and evolved since the late 1990s. These methods and their applications to date are reviewed here in detail, and in context of the both the fundamental phenomena they exploit and the fundamental phenomena they are applied to measure. Where possible, links to macroflow visualization methods are established, and the physical mechanisms underlying these methods are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3a,b
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–f
Fig. 8
Fig. 9a–d
Fig. 10a,b
Fig. 11a–c

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid-mechanics. Ann Rev Fluid Mech 23:261–304

    Google Scholar 

  • Alarie JP, Jacobson SC, Ramsey JM (2001) Electrophoretic injection bias in a microchip valving scheme. Electrophoresis 22:312–317

    Google Scholar 

  • Barker SLR, Ross D, Tarlov MJ, Gaitan M, Locascio LE (2000) Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal Chem 72:5925–5929

    Google Scholar 

  • Bayt RL, Breuer KS (2000) Fabrication and testing of micro-sized cold-gas thrusters in micropropulsion of small spacecraft. In: Micci M, Ketsdever A (eds), Progress in Astronautics and Aeronautics, vol 187. AIAA, Reston, VA, pp 381–398

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Ann Rev Biomed Eng 4:261–286

    Google Scholar 

  • Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76:3208–3213

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics. Pergamon Press, Oxford

  • Bourdon CJ, Olsen MG, Gorby AD (2004a) Validation of an analytical solution for depth of correlation in microscope particle image velocimetry. Meas Sci Technol 15:318–327

    Google Scholar 

  • Bourdon CJ, Olsen MG, Gorby AD (2004b) Power-filter technique for modifying depth of correlation in micro-PIV experiments. Exp Fluids (in press)

  • Bousse L, Cohen C, Nikiforov T, Chow A, Kopf-Sill AR, Dubrow R, Parce W (2000) Electrokinetically controlled microfluidic analysis systems. Ann Rev Biophys Biomol Struct 29:155–181

    Google Scholar 

  • Breuer KS (ed) (2004) Micro- and nano-scale diagnostic techniques. Springer, New York Berlin Heidelberg (in press)

  • Brody JP, Yager P, Goldstein RE, Austin RH (1996) Biotechnology at low Reynolds numbers. Biophys J 71:3430–3441

    Google Scholar 

  • Chiu J-J, Chen C-N, Lee P-L, Yang CT, Chuang HS, Chien S, Usami S (2003) Analysis of the effect of disturbed flow in monocytic adhesion to endothelial cells. J Biomech 26:1883–1895

    Google Scholar 

  • Chung J, Grigoropoulos CP, Greif R (2003) Infrared thermal velocimetry for nonintrusive flow measurement in silicon microfluidic devices. Rev Scient Instrum 74:2911–2917

    Google Scholar 

  • Compton DA, Eaton JK (1996) A high resolution laser Doppler anemometer for three-dimensional turbulent boundary layers. Exp Fluids 22:111–117

    Google Scholar 

  • Comtebellot G (1976) Hot-wire anemometry. Ann Rev Fluid Mech 8:209–231

    Google Scholar 

  • Cummings EB (2000) An image processing and optimal nonlinear filtering technique for particle image velocimetry of microflows. Exp Fluids Suppl S42–S50.

  • Dahm WJA, Su LK, Southerland KB (1992) A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys Fluids 4:2191–2206

    Google Scholar 

  • Darabi J, Ohadi MM, DeVoe D (2001) An electrohydrodynamic polarization micropump for electronic cooling. J Microelectromech Syst 10:98–106

    Google Scholar 

  • de Mello AJ (2003) Seeing single molecules. Lab on a Chip 3:29N–34N.

    Google Scholar 

  • Devasenathipathy S, Santiago JG (2004) Electrokinetic flow diagnostics. In: Breuer KS (ed), Micro- and nano-scale diagnostic techniques. Springer, New York Berlin Heidelberg (in press)

  • Devasenathipathy S, Santiago JG, Takehara K (2002) Particle tracking techniques for electrokinetic microchannel flows. Anal Chem 74:3704–3713.

    Google Scholar 

  • Devansenathipathy S, Santiago JG, Wereley ST, Meinhart CD, Takehara K (2003) Particle imaging techniques for microfabricated fluidic systems. Exp Fluids 34:504–514

    Google Scholar 

  • Dolnik V, Liu S, Jovanovich S (2000) Capillary electrophoresis on microchip. Electrophoresis 21:41–54

    Google Scholar 

  • Edel JB, Hill EK, de Mello AJ (2001) Velocity measurement of particulate flow in microfluidic channels using single point confocal fluroescence detection. Analyst 126:1953–1957

    Google Scholar 

  • Effenhauser CS, Bruin GJM, Paulus A, Ehrat M (1997) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem 69:3451–3457

    Google Scholar 

  • Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26

    Google Scholar 

  • Erickson D, Sinton D, Li D (2003) Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab on a Chip 3:141–149

    Google Scholar 

  • Etoh T, Takehara K (1995) Development of a new algorithm and supporting technologies for PIV. In: Proceedings of the International Workshop on PIV, Fukui, Japan, pp 91–106

  • Falco R, Chu CC (1987) Measurement of two-dimensional fluid dynamic quantities using a photochromic grid tracing technique. SPIE 814:706.

    Google Scholar 

  • Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM, (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124:12930–12931

    Google Scholar 

  • Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372

    Google Scholar 

  • Gosch M, Blom H, Holm J, Heino T, Rigler R. (2000) Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal Chem 72:3260–3265

    Google Scholar 

  • Gui L, Wereley ST (2002) A correlation-based continuous window-shift technique to reduce the peak-locking effect in digial PIV image evaluation. Exp Fluids 32:506–517

    Google Scholar 

  • Guilbault GG (1990) Practical fluorescence, 2nd edn. Marcel Dekker, New Orleans, LA

  • Guilkey JE, Gee KR, McMurtry PA, Klewicki JC (1996) Use of caged fluorescent dyes for the study of turbulent passive scalar mixing. Exp Fluids 21:237–242

    Google Scholar 

  • Guilkey JE, Kerstein AR, McMurtry PA, Klewicki JC (1997) Mixing mechanisms in turbulent pipe flow. Phys Fluids 9:717–723

    Google Scholar 

  • Haab BB, Mathies RA (1999) Single-molecule detection of DNA separation in microfabricated capillary electrophoresis chips employing focused molecular streams. Anal Chem 71:5137–5145

    Google Scholar 

  • Harris SR, Lempert WR, Hersh L, Burcham CL, Saville DA, Miles RB (1996) Quantitative measurements of internal circulation in droplets using flow tagging velocimetry. AIAA J 34:449–454

    Google Scholar 

  • Hart DP (1998) Super-resolution PIV by recursive local-correlation. Proc VSJ-SPIE98, AP149:1–10

  • Hecht E (2001) Optics, 4th edn. Addison-Wesley, New York

  • Helmholtz R (1887) Versuche mit einem Dampfstrahl. Ann Phys 32:1–19

    Google Scholar 

  • Hill RB, Klewicki JC (1996) Data reduction methods for flow tagging velocimetry measurements. Exp Fluids 20:142–152

    Google Scholar 

  • Hiller B, Booman RA, Hassa C, Hanson RK (1984) Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl. Rev Sci Instrum 55:1964–1997

    Google Scholar 

  • Herr AE, Molho JI, Santiago JG, Mungal MG, Kenny TW, Garguilo MG (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem 72:1053–1057

    Google Scholar 

  • Ho C-M, Tai Y-C (1996) Review: MEMS and its applications for flow control. J Fluids Eng 188:437–447

    Google Scholar 

  • Ho C-M, Tai Y-C (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Ann Rev Fluid Mech 30:579–612

    Google Scholar 

  • Hohreiter V, Wereley ST, Olsen MG, Chung JN (2002) Cross-correlation analysis for temperature measurement. Meas Sci Technol 13:1072–1078

    Google Scholar 

  • Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60:1837–1938

    Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, New York

    Google Scholar 

  • Inoue S, Spring KR (1997) Video microscopy the fundamentals, 2nd edn. Plenum Press, New York

  • Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378

    Google Scholar 

  • Jacobson SC, Culbertson CT, Daler JE, Ramsey JM (1998) Microchip structures for submillisecond electrophoresis. Anal Chem 70:3476–3480

    Google Scholar 

  • Jensen KF (1999) Microchemical systems: status, challenges, and opportunities. AIChE J 45:2051–2054

    Google Scholar 

  • Johnson TJ, Ross D, Gaitan M, Locascio LE (2001) Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow. Anal Chem 73:3656–3661

    Google Scholar 

  • Kamholz AE (2004) Proliferation of microfluidics in literature and intellectual property. Lab on a chip 4:16N–20N

    Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Google Scholar 

  • Keane RD, Adrian RJ, Jensen OS (1995) Super-resolution particle imaging velocimetry. Meas Sci Technol 6:754–768

    Google Scholar 

  • Kim MJ, Beskok A, Kihm KD (2002) Electro-osmosis-driven micro-channel flows: a comparative study of microscopic particle image velocimetry measurements and numerical simulations. Exp Fluids 32:170–180

    Google Scholar 

  • Kirby BJ, Hasselbrink Jr, EF (2004a) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202

    Google Scholar 

  • Kirby BJ, Hasselbrink Jr, EF (2004b) Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25:203–213

    Google Scholar 

  • Klank H, Goranovic G, Kutter JP, Gjelstrup H, Michelsen J, Westergaard CH (2002) PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour. J Micromech Microeng 12:862–869

    Google Scholar 

  • Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3866

    Google Scholar 

  • Knudsen M (1909) Die Gesetze der Molecular stromung und die inneren Reibungstromung der Gase durch Rohren. Ann Phys (Leipzig) 28:75–130

    Google Scholar 

  • Koochesfanhani MM, Gendrich CP, Nocera DG (1993) A new technique for studying the Lagrangian evolution of mixing interfaces in water flows. Bull Am Phys Soc 38:2287

    Google Scholar 

  • Koutsiaris AG, Mathioulakis DS, Tsangaris S (1999) Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries. Meas Sci Technol 10:1037–1046

    Google Scholar 

  • Lee S-J, Kim G-B (2003) X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J Appl Phys 94:3620–3623

    Google Scholar 

  • Lee WY, Wong M, Zohar Y (2002) Microchannels in series connected via a contraction/expansion section. J Fluid Mech 459:187–206

    Google Scholar 

  • Lempert WR, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40:1065–1070

    Google Scholar 

  • Lempert WR, Magee K, Ronney P, Gee KR, Haugland RP (1995) Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM). Exp Fluids 18:249–257

    Google Scholar 

  • Lenne P-F, Colombo D, Giovannini H, Rigneault H (2002) Flow profiles and directionality in microcapillaries measured by fluorescence correlation spectroscopy. Single Mol 3:194–200

    Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics. Academic Press, New York (in press)

  • Liu D, Garimella SV, Wereley ST (2004) Infrared micro-particle image velocimetry of fluid flow in silicon-based microdevices. Submitted

  • Locke BR, Acton M, Gibbs SJ (2001) Electro-osmotic flow in porous media using magnetic resonance imaging. Langmuir 17: 6771–6781

    Google Scholar 

  • Lowry M, He Y, Geng L (2002) Imaging solute distribution in capillary electrochromatography with laser scanning confocal microscopy. Anal Chem 74:1811–1818

    Google Scholar 

  • Lumma D, Best A, Gansen A, Feuillebois F, Radler JO, Vinogradova OI (2003) Flow profile near a wall measured by double-focus fluorescence cross-correlation. Phys Rev E 67(056313)

  • MacInnes JM, Du X, Allen RW (2003) Prediction of electrokinetic and pressure flow in a microchannel T-junction. Phys Fluids 15:1992–2005

    Google Scholar 

  • Markov DA, Bornhop DJ (2001) Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection. Fresenius J Anal Chem 371:234–237

    Google Scholar 

  • Masliyah JH (1994) Electrokinetic transport phenomena. AOSTRA, Edmonton, Alberta

  • Mason WT (1992) Fluorescent and luminescent probes for biological activity, biological techniques. Academic Press, London

  • Maynes D, Webb AR (2002) Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exp Fluids 32:3–15

    Google Scholar 

  • McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73:4045–4049

    Google Scholar 

  • Meinhart CD, Wereley ST (2003) The theory of diffraction-limited resolution in microparticle image velocimetry. Meas Sci Technol 14:1047–1053

    Google Scholar 

  • Meinhart CD, Zhang H (2000) The flow structure inside a microfabricated inkjet printhead. J Microelectromech Syst 9:67–75

    Google Scholar 

  • Meinhart CD, Wereley ST, Gray MHB (2000a) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814

    Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (1998) Micron-resolution velocimetry techniques. In: Adrian RJ et al. (eds), Developments in laser technologies and applications to fluid mechanics. Springer, Berlin Heidelberg New York

  • Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurements of a microchannel flow. Exp Fluids 27:414–419

    Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (2000b) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289

    Google Scholar 

  • Meinhart CD, Wang D, Turner K (2003) Measurement of AC electrokinetic flows. Biomed Microdevices 5:139–145

    Google Scholar 

  • Miles RB, Grinstead J, Kohl RH, Diskin G (2000) The RELIEF flow tagging technique and its application in engine testing facilities and for helium–air mixing studies. Meas Sci Technol 11:1272–1281

    Google Scholar 

  • Miller S (1962) Photochemical reaction for the study of velocity patterns and profiles. BASc thesis, University of Toronto, Toronto, Ontario, Canada

  • Minor M, van der Linde AJ, van Leeuwen HP, Lyklema J (1997) Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities. J Colloid Interface Sci 189:370–375

    Google Scholar 

  • Mitchison TJ, Sawin KE, Theriot JA, Gee K, Mallavarapu A (1998) Caged fluorescent probes. In: Marriot G (ed), Caged compounds, Methods in enzymology, vol 291. Academic Press, New York, ch 4

  • Molho JI, Herr AE, Mosier BP, Santiago JG, Kenny TW Brennen RA, Gordon GB, Mohammadi B (2001) Optimization of turn geometries for microchip electrophoesis. Anal Chem 73:1350–1360

    Google Scholar 

  • Mosier BP, Molho JI, Santiago JG (2002) Photobleached-fluorescence imaging of microflows. Exp Fluids 33:545–554

    Google Scholar 

  • Nguyen N-T, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, Norwood, MA

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Google Scholar 

  • Olsen MG, Adrian RJ (2000a) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 7:S166–S174.

    Google Scholar 

  • Olsen MG, Adrian RJ (2000b) Brownian motion and correlation in particle image velocimetry. Optics Laser Technol 32:621–627

    Google Scholar 

  • Olsen MG, Bourdon CJ (2003) Out-of-plane motion effects in microscopic particle image velocimetry. J Fluids Eng 125:895–901

    Google Scholar 

  • Ovryn B (2000) Three-dimensional forward scattering particle image velocimetry applied to a microscope field-of-view. Exp Fluids S175–S184

  • Park JS, Choi CK, Kihm KD (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37:105–119

    Google Scholar 

  • Park JS, Kihm KD, Pratt DM (2000) Molecular tagging fluorescence velocimetry (MTFV) to measure meso- to micro-scale thermal flow fields. In: Proceedings of the American Society of Mechanical Engineers, International Mechanical Engineering Congress and Exposition (ASME–IMECE), 5–10 November 2000, Orlando, FL

  • Paul PH, Garguilo MG, Rakestraw DJ (1998) Imaging of pressure- and electrokinetically driven flows through open capillaries. Anal Chem 70:2459–2467

    Google Scholar 

  • Pittman JL, Gessner HJ, Frederick KA, Raby EM, Batts JB, Gilman SD (2003a) Experimental studies of electroosmotic flow dynamics during sample stacking for capillary electrophoresis. Anal Chem 75:3531–3538

    Google Scholar 

  • Pittman JL, Henry CS, Gilman SD (2003b) Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments. Anal Chem 75:361–370

    Google Scholar 

  • Pittman JL, Schrum KF, Gilman SD (2001) On-line monitoring of electroosmotic flow for capillary electrophoretic separations. Analyst 126:1240–1247

    Google Scholar 

  • Pitz RW, Wehrmeyer JA, Ribarov LA, Oguss DA, Btliwala F, DeBarber PA, Deusch S, Dimotakis PE (2000) Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry. Meas Sci Technol 11:1259–1271

    Google Scholar 

  • Prasad AK, Adrian RJ, Landreth CC, Offutt PW (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116

    Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics, 2nd edn. Wiley, New York

  • Ponce A, Wong PA, Way JJ, Nocera DG (1993) Intense phosphorescence triggering by alcohols upon formation of a cyclodextrin ternary complex. J Phys Chem 97:11137

    Google Scholar 

  • Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Google Scholar 

  • Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil Trans R Soc Lond 174:935–982

    Google Scholar 

  • Ross D, Locascio LE (2002) Microfluidic temperature gradient focusing. Anal Chem 74:2556–2564

    Google Scholar 

  • Ross D, Locascio LE (2003) Effect of charged fluorescent dye on the electroosmotic mobility in microchannels. Anal Chem 75:1218–1220

    Google Scholar 

  • Ross D, Gaitan M, Locascio LE (2001a) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73:4119–4123

    Google Scholar 

  • Ross D, Johnson TJ, Locascio LE (2001b) Imaging of electroosmotic flow in plastic microchannels. Anal Chem 73:2509–2515

    Google Scholar 

  • Russ JC (1999) The image processing handbook, 3rd edn. CRC Press, Boca Raton, FL

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319

    Google Scholar 

  • Sato Y, Inaba S, Hishida K, Maeda M (2003a) Spatially averaged time-resolved particle-tracking velocimetry in microspace considering Brownian motion of submicron fluorescent particles. Exp Fluids 35:167–177

    Google Scholar 

  • Sato Y, Irisawa G, Ishizuka M, Hishida K, Maeda M (2003b) Visualization of convective mixing in microchannel by fluorescence imaging. Meas Sci Technol 14:114–121

    Google Scholar 

  • Schrum KF, Lancaster JM, III, Johnston SE, Gilman SD (2000) Monitoring electroosmotic flow by periodic photobleaching of a dilute, neutral fluorophore. Anal Chem 72:4317–4321

    Google Scholar 

  • Selvaganapathy PR, Carlen ET, Mastrangelo CH (2003) Recent progress in microfluidic devices for nucleic acid and antibody assays. Proc IEEE 91:954–975

    Google Scholar 

  • Sharp KV, Adrian RJ, Santiago JG, Molho JI (2002) Liquid flows in microchannels. In: Gad-el-Hak M (ed), CRC Handbook of MEMS. CRC Press, New York, pp 6-1–6-38

  • Shelby JP, Chiu DT (2003) Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detection. Anal Chem 75: 1387–1392

    Google Scholar 

  • Singh AK, Cummings EB, Throckmorton DJ (2001) Fluorescent liposome flow markers for microscale particle-image velocimetry. Anal Chem 73:1057–1061

    Google Scholar 

  • Sinton D (2003) Microscale flow visualization. PhD thesis, University of Toronto, Toronto, Ontario, Canada

  • Sinton D, Li D (2003a) Electroosmotic velocity profiles in microchannels. Colloids Surfaces A 222:273–283

    Google Scholar 

  • Sinton D, Li D (2003b) Microfluidic velocimetry with near-wall resolution. Int J Thermal Sci 42:847–855

    Google Scholar 

  • Sinton D, Erickson D, Li D (2002a) Photo-injection based sample design and electroosmotic transport in microchannels. J Micromech Microeng 12:898–904

    Google Scholar 

  • Sinton D, Erickson D, Li D (2003a) Micro-bubble lensing induced photobleaching (μ-BLIP) with application to microflow visualization. Exp Fluids 35:178–187

    Google Scholar 

  • Sinton D, Escobedo-Canseco C, Ren L, Li D (2002b) Direct and indirect electroosmotic flow velocity measurements in microchannels. J Colloid Interface Sci 254:184–189

    Google Scholar 

  • Sinton D, Ren L, Li D (2003b) Visualization and numerical modelling of microfluidic on-chip injection processes. J Colloid Interface Sci 260:431–439

    Google Scholar 

  • Sinton D, Ren L, Li D (2003d) A dynamic loading step for microfluidic chip sample injection. J Colloid Interface Sci 266:448–456

    Google Scholar 

  • Sinton D, Ren L, Xuan X, Li D (2003e) Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips. Lab on a Chip 3:173–179

    Google Scholar 

  • Sinton D, Xuan X, Li D (2004) Thermally-induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure. Submitted

  • StClaire JC, Hayes MA (2000) Heat index flow monitoring in capillaries with interferometric backscatter detection. Anal Chem 72:4726–4730

    Google Scholar 

  • Stier B, Koochesfahani MM (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26:297–304

    Google Scholar 

  • Stone HA, Kim S (2001) Microfluidics: basic issues, applications and challenges. AIChE J 47:1250–1254

    Google Scholar 

  • Stone SW, Meinhart CD, Wereley ST (2002) A microfluidic-based nanoscope. Exp Fluids 33:613–619

    Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech 36:381–411

    Google Scholar 

  • Stroock AD, Weck M, Chiu D, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000a) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84:3314–3317

    Google Scholar 

  • Stroock AD, Weck M, Chiu D, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000b) Erratum: patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84:6050.

    Google Scholar 

  • Sugii Y, Nishio S, Okamoto K (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23:403–416

    Google Scholar 

  • Sullivan P, Ancimer R, Wallace J (1999) Turbulence averaging within spark ignition engines. Exp Fluids 27:92–101

    Google Scholar 

  • Taylor JA, Yeung ES (1993) Imaging of hydrodynamic and electrokinetic flow profiles in capillaries. Analyt Chem 65: 2928–2932

    Google Scholar 

  • Takehara K, Adrian RJ, Etoh GT, Christensen KT (2000) A Kalman tracker for super-resolution PIV. Exp Fluids 29:SO34–SO41

    Google Scholar 

  • Tallarek U, Rapp E, Scheenen T, Bayer E, Van As H (2000) Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion. Analyt Chem 72:2292–2301

    Google Scholar 

  • Tallarek U, Rapp E, Seidel-Morgenstern A, Van As H (2002) Electroosmotic flow phenomena in packed capillaries: from the interstitial velocities to intraparticle and boundary layer mass transfer. J Phys Chem B 106:12709–12721

    Google Scholar 

  • Tallarek U, Scheenen TWJ, de Jager PA, Van As H (2001) Using NMR displacement imaging to characterize electroosmotic flow in porous media. Magn Reson Imaging 19:453–456

    Google Scholar 

  • Thompson BR, Maynes D, Webb BW (2002) Micro-scale measurements using molecular tagging velocimetry: methodology and uncertainty. In: Proceedings of the American Society of Mechanical Engineers Fluids Summer Meeting, 14–18 July 2002, Montreal, Canada

  • Thompson BR, Maynes D, Webb BW (2003) Characterization of the hydrodynamically developing flow in a microtube using molecular tagging velocimetry. In: Proceedings of International Conference on Microchannels and minichannels, 21–23 April 2003, Rochester, NY

  • Tieu AK, Mackenzie MR, Li EB (1995) Measurements in microscopic flow with a solid-state LDA. Exp Fluids 19:293–294

    Google Scholar 

  • Tokumaru PT, Dimotakis PE (1995) Image correlation velocimetry. Exp Fluids 19:1–15

    Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12

    Google Scholar 

  • Tseng F-G, Yang I-D, Lin K-H, Ma K-T, Lu M-C, Tseng Y-T, Chieng C-C (2002) Fluid filling into micro-fabricated reservoirs. Sensors Actuators A 97–98:131–138

  • Verpoorte E, De Rooij NF (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953

    Google Scholar 

  • Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28:3011–3016

    Google Scholar 

  • Wereley ST, Meinhart CD (2001) Second-order accurate particle image velocimetry. Exp Fluids 31:258–268

    Google Scholar 

  • Wereley ST, Meinhart CD (2004) Micron-resolution particle image velocimetry. In: Breuer KS (ed), Micro- and nano-scale diagnostic techniques. Springer, New York Berlin Heidelberg (in press)

  • Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40:1047–1055

    Google Scholar 

  • Westin KJA, Choi C-H, Breuer KS (2003) A novel system for measuring liquid flow rates with nanoliter per minute resolution. Exp Fluids 34:635–642

    Google Scholar 

  • Whitesides GM, Stroock AD(2001) Flexible methods for microfluidics. Physics Today 54(6):42–48

    Google Scholar 

  • Wong PK, Lee Y-K, Ho C-M (2003) Deformation of DNA molecules by hydrodynamic focusing. J Fluid Mech 497:55–65

    Google Scholar 

  • Xuan X, Sinton D, Li D (2004a) Thermal end effects on electroosmotic flow in a capillary. Int J Heat Mass Transfer 47:3145–3157

    Google Scholar 

  • Xuan XC, Xu B, Sinton D, Li D (2004b) Electroosmotic flow with Joule heating effects. Lab on a Chip 4:230–236

    Google Scholar 

  • Yamamoto T, Inaba S, Sato Y, Hishida K, Maeda M (2002) Measurements in microchannel by laser induced molecular tagging and micro-PIV. In: Proceeding of the 11th Symposium on Applications of laser technology to fluid mechanics, 8–11 July, Lisbon, Portugal

  • Yurechko VN, Ryazantsev YS (1991) Fluid motion investigation by the photochromic flow visualization technique. Exp Thermal Fluid Sci 4:273–288

    Google Scholar 

  • Zettner CM, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34:115–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sinton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinton, D. Microscale flow visualization. Microfluid Nanofluid 1, 2–21 (2004). https://doi.org/10.1007/s10404-004-0009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-004-0009-4

Keywords

Navigation