Skip to main content

Advertisement

Log in

Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslides are one of the most serious geomorphological hazards in Asturias (NW Spain), where their temporal forecasting constitutes a key issue. The present work uses 559 records from the Principality of Asturias Landslide Database (BAPA) and daily precipitation data series from six rain gauges, gathered during a period of 8 hydrological years (2008–2016), to calculate empirical antecedent rainfall thresholds for the triggering of landslides. The methodology includes (i) the selection of a representative input dataset and (ii) the assessment of the performance of the thresholds through contingency tables and skill scores. On this basis, six local rainfall thresholds for different areas within Asturias have been calculated and compared, allowing progress towards a better understanding of the rainfall-landslides relationship in the NW of Spain. The analysis has highlighted the strong influence of (i) the climatic variability between areas and (ii) the different seasonal precipitation patterns on the landslide-triggering conditions. The antecedent rainfall plays a key role during the wet period while the intensity of the rainfall event is the most relevant factor during the dry period. These observations must be considered to successfully address the temporal forecasting of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AEMET (2012) Valores Climatológicos normales y estadísticos de estaciones principales (1981-2010). Agencia Estatal de Meteorología. http://www.aemet.es/es/conocermas/publicaciones/detalles/Valores_normales [on line] [accessed 30/11/ 2015]

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265. https://doi.org/10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Alonso JL, Pulgar J, García-Ramos J, Barba P (1996) W5 Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain). In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, pp 214-227

  • Alonso JL, Marcos A, Suárez A (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol Acta 7(4):451–473. https://doi.org/10.1344/105.000001449

    Article  Google Scholar 

  • Arasti E, Celis R, Fernández-Cañadas JA, Andrés MS, Moreno G (2002) Precipitaciones máximas en Asturias. Biblioteca de módulos TEMPO. Agencia Estatal de Meteorología. http://www.aemet.es/es/conocermas/recursos_educativos/modulos_tempo [on line] [accessed 30/11/2015]

  • Ballesteros D, Jiménez-Sánchez M, Giralt S, García-Sansegundo J, Meléndez-Asensio M (2015) A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain). Geomorphology 247:35–54. https://doi.org/10.1016/j.geomorph.2015.02.026

    Article  Google Scholar 

  • Baum RL, Godt JW (2010) Early warning of rainfall-induced landslides and debris flows in the USA. Landslides 7:259–272. https://doi.org/10.1007/s10346-009-0177-0

    Article  Google Scholar 

  • Botey, R., Guijarro, J.A., Jiménez, A., 2013. Valores Normales de Precipitación Mensual 1981–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente-Agencia Estatal de Meteorología, Madrid. NIPO: 281-13-007-X

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458

    Article  Google Scholar 

  • Brunetti MT, Melillo M, Perucacci S, Ciabatta L, Brocca L (2018) How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens Environ 210:65–75. https://doi.org/10.1016/j.rse.2018.03.016

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity–duration control of shallow landslides and debris flows. Geografiska Annaler A 62:23–27

    Google Scholar 

  • Caracciolo D, Arnone E, Conti FL, Noto LV (2017) Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds. Environ Earth Sci 76(222):1–16. https://doi.org/10.1007/s12665-017-6545-5

    Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93. https://doi.org/10.1016/S0169-555X(99)00046-X

    Article  Google Scholar 

  • Corominas J, Moya J, Hürlimann M (2002) Landslide rainfall triggers in the Spanish Eastern Pyrenees. In: Proceeding of the 4th EGS Plinius Conference on Mediterranean Storms, Mallorca, Spain.

  • Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm, London, p 252

    Google Scholar 

  • Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding: fundamental research issues. Zeitschrift für Geomorphologie, Supplement band 115:141–155

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation transportation research board special report 247, Washington D.C., pp 36-75

  • Dahala RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100:429–443. https://doi.org/10.1016/j.geomorph.2008.01.014

    Article  Google Scholar 

  • Domènech G, Corominas J, Moya J (2012) Determinación de umbrales pluviométricos para la reactivación de grandes deslizamientos mediante curvas ROC. In: Díez G (ed) Avances de la Geomorfología en España 2010-2012. Actas de la XII Reunión Nacional de Geomorfología, Santander, Spain, pp 65–68

    Google Scholar 

  • Domínguez-Cuesta MJ (2003) Geomorfología e Inestabilidades de ladera en la Cuenca Carbonífero Central (Valle del Nalón, Asturias). Análisis de la susceptibilidad ligada a los movimientos superficiales del terreno. PhD dissertation, Universidad de Oviedo, 224.

  • Domínguez-Cuesta MJ, Jiménez-Sánchez M, Rodríguez García A (1999) Press archives as temporal records of landslides in the North of Spain: relationships between rainfall and instability slope events. Geomorphology 30(1–2):125–132. https://doi.org/10.1016/S0169-555X(99)00049-5

    Article  Google Scholar 

  • Domínguez-Cuesta MJ, Jiménez-Sánchez M, Berrezueta E (2007) Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology 89:358–369

    Article  Google Scholar 

  • Domínguez-Cuesta MJ, Quintana L, Alonso JL, García Cortés S (2017) Evolution of a rainfall induced landslide in Porciles, Asturias (North of Spain). EGU General Assembly 2017. Geophys Res Abstr 19:EGU2017–EGU9344

    Google Scholar 

  • Domínguez-Cuesta MJ, Valenzuela P, Rodríguez-Rodríguez L, Ballesteros D, Jiménez-Sánchez M, Piñuela L, García-Ramos JC (2018) Cliff coast of Asturias. In: Morales JA (ed) Spanish coastal systems: dynamic processes, sediments and management. Springer, pp 49-77. ISBN 978-3-319-93169-2

  • Ferrer Gijón M (1995) Los movimientos de ladera en España. In: Reducción de Riesgos Geológicos en España. Jornadas sobre Reducción de Riesgos Geológicos en España, Instituto Tecnológico Geominero de España and Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, Spain, pp 69–82

  • Fiedler FR (2003) Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J Hydrol Eng 8(4):219–221. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:4(219)

    Article  Google Scholar 

  • Fuchs S, Keiler M, Sokratov S, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Nat Hazards 68(3):1217–1241. https://doi.org/10.1007/s11069-012-0508-7

    Article  Google Scholar 

  • Gallart F, Clotet N (1988) Some aspects of the geomorphic process triggered by an extreme rainfall event: the November 1982 flood in the Eastern Pyrenees. Catena Suppl 13:75–95

    Google Scholar 

  • García Couto MA (ed) (2011) Iberian climate atlas. Agencia Estatal de Meteorología (España) and Instituto de Meteorología (Portugal), Madrid, Spain, 79.

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842. https://doi.org/10.5194/nhess-12-829-2012

    Article  Google Scholar 

  • González Moradas MR, Lima de Montes Y (2001) Cartografía de los deslizamientos en la zona central del Principado de Asturias. Mapping 73:6–15

    Google Scholar 

  • Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York, USA, 395 pp

    Book  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • INE-Instituto Nacional de Estadística (2015) Cifras oficiales del Padrón municipal. http://www.ine.es/dynt3/inebase/es/index.html?padre=517&dh=1 [on line]. [accessed 16/03/2017]

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54:137–156. https://doi.org/10.1016/S0169-555X(02)00339-2

    Article  Google Scholar 

  • Jan CD, Chen CL (2005) Debris flows caused by typhoon Herb in Taiwan. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 363–385

    Google Scholar 

  • Jiménez-Sánchez M, Ballesteros D, Rodríguez-Rodríguez L, Domínguez-Cuesta MJ (2014) The Picos de Europa national and regional parks. In: Gutiérrez F, Gutiérrez M (eds) Landscapes and landforms of Spain. Springer, World Geomorphological Landscapes, pp 155–163

    Chapter  Google Scholar 

  • Marcos A (2004) Zona Asturoccidental-Leonesa. In: Vera JA (ed) Geología de España, SGE-IGME, pp 49–68

  • Marques R, Zêzere JL, Trigo R, Gaspar J, Trigo I (2008) Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): relationships with the North Atlantic Oscillation. Hydrol Process 22(4):478–494. https://doi.org/10.1002/hyp.6879

    Article  Google Scholar 

  • Marquínez J, Menéndez Duarte RA, Fernández Menéndez S, Fernández Iglesias E, Jiménez B, Wozniak E, Lastra J, Roces J, Adrados L (2003) Riesgos Naturales en Asturias. Principado de Asturias-INDUROT, KRK Ediciones. 133.

  • Martínez J, Menéndez-Duarte R, Lastra J (2005) Modelo de susceptibilidad de movimientos en masa profundos para Asturias (Norte de España). Revista CG 19(3–4):23–35

    Google Scholar 

  • Mateos RM, García-Moreno I, Azañón JM (2012) Freeze–thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain). Landslides 9(3):417–432. https://doi.org/10.1007/s10346-011-0290-8

    Article  Google Scholar 

  • Mathew J, Giri Babu D, Kundu S, Vinod Kumar K, Pant CC (2014) Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 11:575–588. https://doi.org/10.1007/s10346-013-0408-2

    Article  Google Scholar 

  • McGuire B, Mason I, Kilburn C (2002) Natural hazards and environmental change. Arnold Publishers, London, pp 1–187

    Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Roccati A, Guzzetti F (2018) A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ Model Softw 105:230–243. https://doi.org/10.1016/j.envsoft.2018.03.024

    Article  Google Scholar 

  • Menéndez-Duarte RA, Marquínez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43(1):117–136. https://doi.org/10.1016/S0169-555X(01)00126-X

    Article  Google Scholar 

  • Moya J (2002) Determinación de la edad y de la periodicidad de los deslizamientos en el Prepirineo oriental. PhD dissertation, Universitat Politècnica de Catalunya, Spain, 282.

  • Moya J, Corominas J (1997) Condiciones pluviométricas desencadenantes de deslizamientos en el Pirineo Oriental. In: Alonso E (ed) IV Simposio Nacional sobre Taludes y Laderas Instables, vol 1. Granada, Spain, pp 199–212

    Google Scholar 

  • Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C (2017) Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front. In Press 9(6):1871–1882. https://doi.org/10.1016/j.gsf.2017.10.008

    Article  Google Scholar 

  • Palenzuela JA, Jiménez-Perálvarez JD, Chacón J, Irigaray C (2016) Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: an approach with examples from the Betic Cordillera (Spain). Nat Hazards 84(1):185–212. https://doi.org/10.1007/s11069-016-2416-8

    Article  Google Scholar 

  • Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M (2015) Loss estimation for landslides in mountain areas - an integrated toolbox for vulnerability assessment and damage documentation. Environ Model Softw 63:156–169. https://doi.org/10.1016/j.envsoft.2014.10.003

    Article  Google Scholar 

  • Pedrozzi G (2004) Triggering of landslides in canton Ticino (Switzerland) and prediction by the rainfall intensity and duration method. Bull Eng Geol Environ 63:281–291

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139-140:79–90

    Article  Google Scholar 

  • Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. https://doi.org/10.1016/j.geomorph.2017.03.031

    Article  Google Scholar 

  • Piciullo L, Calvello M, Cepeda JM (2018) Territorial early warning systems for rainfall-induced landslides. Earth Sci Rev 179:228–247. https://doi.org/10.1016/j.earscirev.2018.02.013

    Article  Google Scholar 

  • Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, Aranburu A (2015) Research history on glacial geomorphology and geochronology of the Cantabrian Mountains, north Iberia (43–42 N/7–2 W). Quat Int 364:6–21. https://doi.org/10.1016/j.quaint.2014.06.007

    Article  Google Scholar 

  • Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 285:16–27. https://doi.org/10.1016/j.geomorph.2017.02.001

    Article  Google Scholar 

  • SADEI-Sociedad Asturiana de Estudios Económicos e Industriales (2016) Datos Básicos de Asturias 2016. Gobierno del Principado de Asturias. Oviedo, Spain, p 89

    Google Scholar 

  • San Millán Revuelta E (2015) The influence of precipitations on the occurrence of landslides in Cantabria. Universidad de Cantabria, Spain, Master dissertation, 50 pp

    Google Scholar 

  • Sattari MT, Joudi AR, Kusiak A (2016) Assessment of different methods for estimation of missing data in precipitation studies. Hydrol Res 48(4):1032–1044

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501. https://doi.org/10.1007/s10346-018-0966-4

    Article  Google Scholar 

  • Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2012) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562

    Article  Google Scholar 

  • Trigo RM, Zêzere JL, Rodrigues ML, Trigo IF (2005) The influence of the North Atlantic oscillation on rainfall triggering of landslides near Lisbon. Nat Hazards 36:331–354

    Article  Google Scholar 

  • Valenzuela P, Domínguez-Cuesta MJ, Mora García MA, Jiménez-Sánchez M (2017) A spatio-temporal landslide inventory for the NW of Spain: BAPA database. Geomorphology 293:11–23. https://doi.org/10.1016/j.geomorph.2017.05.010

    Article  Google Scholar 

  • Valenzuela P, Domínguez-Cuesta MJ, Mora García MA, Jiménez-Sánchez M (2018a) Rainfall thresholds for the triggering of landslides considering previous soil moisture conditions (Asturias, NW Spain). Landslides 15:273–282. https://doi.org/10.1007/s10346-017-0878-8

    Article  Google Scholar 

  • Valenzuela P, Iglesias M, Domínguez-Cuesta MJ, Mora García MA (2018b) Meteorological patterns linked to landslide triggering in Asturias (NW Spain): a preliminary analysis. Geosciences 8(1):18. https://doi.org/10.3390/geosciences8010018

    Article  Google Scholar 

  • Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369. https://doi.org/10.1007/s10346-011-0299-z

    Article  Google Scholar 

  • Vaz T, Zêzere JL, Pereira S, Oliveira S, Garcia RAC, Quaresma I (2018) Regional rainfall thresholds for landslide occurrence using a centenary database. Nat Hazards Earth Syst Sci 18(4):1037–1054. https://doi.org/10.5194/nhess-18-1037-2018

    Article  Google Scholar 

  • Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330

    Article  Google Scholar 

  • Vessia G, Parise M, Brunetti MT, Peruccacci S, Rossi M, Vennari C, Guzzetti F (2014) Automated reconstruction of rainfall events responsible for shallow landslides. Nat Hazards Earth Syst Sci 14(9):2399–2408. https://doi.org/10.5194/nhess-14-2399-2014

    Article  Google Scholar 

  • Wieczorek GF (1996) Landslides triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Research Council, Transportation Research Board, Washington, pp 76–90

    Google Scholar 

  • Zêzere JL, Trigo R (2011) Impacts of the NAO on landslides. In: Vicente-Serrano SM, Trigo R (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean Region. Advances in global change research, 46. Springer, pp 199-212

  • Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5:331–344

    Article  Google Scholar 

  • Zêzere JL, Trigo R, Fragoso M, Oliveira S, Garcia RAC (2008) Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 8:483–499. https://doi.org/10.5194/nhess-8-483-2008

    Article  Google Scholar 

  • Zêzere JL, Vaz T, Pereira S, Oliveira SC, Marqués R, García RAC (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73:2917–2936

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the comments of the editor and two anonymous referees, who greatly helped to improve the manuscript.

Funding

This research has been funded by the Department of Employment, Industry and Tourism of the Government of Asturias, Spain, and the European Regional Development Fund FEDER, within the framework of the research grant “GEOCANTABRICA: Procesos geológicos modeladores del relieve de la Cordillera Cantábrica” (FC-15-GRUPIN14-044), and supported by cooperation between the Department of Geology at the University of Oviedo and the AEMET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Valenzuela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, P., Zêzere, J.L., Domínguez-Cuesta, M.J. et al. Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Landslides 16, 1285–1300 (2019). https://doi.org/10.1007/s10346-019-01170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01170-2

Keywords

Navigation