Skip to main content

Advertisement

Log in

Freeze–thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain)

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Between 2008 and 2010, the island of Majorca (Spain) experienced the coldest and wettest winters of the last 40 years. Accumulated rainfall was twice the average and values of intense rainfall up to 296 mm/24 h were recorded, very similar to those calculated for a return period of 100 years. Additionally, high precipitation coincided with anomalous, low temperatures, with abundant snowfall and freezing in the highest zones of the Tramuntana Range, in the northwest sector of the island. As a result, 34 mass movements were recorded on the range, which seriously affected the road network in an area of great importance for tourism, as it welcomes 8.5 million visitors each year. Fourteen rockfalls, 1 rock avalanche, 15 landslides and 4 karstic collapses were inventoried. The geological structure, formed by a series of NW overlapping thrusts, determines the distribution as well as the failure pattern of the movements. Thus, the northern face of the range registered 68% of the mass movements: nine rockfalls with planar failure took place as well as all the landslides recorded. Likewise, south-facing slopes have been affected by longer runout rockfalls with a wedge-type failure. The thorough analysis of the meteorological data shows that most of the movements have taken place after antecedent rainfall over 800 mm. Additionally, the rockfalls have also occurred after several freeze–thaw cycles, being a determining and unusual factor in this warm region. Intense rainfall >90 mm/24 h also caused rockfalls as well as exceptional very intense rainfall >120 mm/24 h caused landslides. The results aim to contribute to the design of an early warning system coordinating emergency, infrastructure services and meteorological centres in a region of high risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alvaro M (1987) La tectónica de cabalgamientos de la Sierra Norte de Mallorca (Islas Baleares). Boletín Geológico y Minero 98:34–41

    Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120:56–64

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslide in Italy. Nat Hazards Earth Syst Sci 10:447–458

    Article  Google Scholar 

  • Bolley S and Oliaro P (1999) Analisi dei debris flows in alcuni bacini campioni dell´Alta Val Susa. Geoingenieria Ambientale e Mineraria, Marzo. 69–74

  • Cardinalli M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2006) Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment. Nat Hazards Earth Syst Sci 6:237–260

    Article  Google Scholar 

  • Chang J-C, Slaymaker O (2002) Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena 46(4):285–307

    Article  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River Basin, Eastern Pyrenees, Spain. Geomorphology 30(1–2):79–93

    Article  Google Scholar 

  • Corominas J (2006) El clima y sus consecuencias sobre la actividad de los movimientos de ladera en España. Cuaternario y Geología 20(3–4):89–113

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, National Research Council, Washington, D.C., pp 36–75, Chapter 3. Special report

    Google Scholar 

  • D’Amato G, Giannechini A, Puccinelli A (2004) The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy). Eng Geol 73(3–4):215–228

    Article  Google Scholar 

  • Díaz de Terán JKR, Cendrero A, Araña V, Badiola ER (1997) Geomorphological hazards of Europe. Elsevier, Amsterdam, pp 429–456

    Book  Google Scholar 

  • Dikau R, Schrott L (1999) The temporal stability and activity of landslide in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology 30:1–12

    Article  Google Scholar 

  • Domínguez MJ, Jiménez M, Rodríguez A (1999) Press archives as temporal records of landslides in the North of Spain: relationships between rainfall and instability slope events. Geomorphology 30:125–132

    Article  Google Scholar 

  • Duarte RM, Marquinez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43(1–2):117–136

    Article  Google Scholar 

  • Ferrer M, López JM, Mateos RM, Morales R, Rodríguez-Perea A (1997) Análisis de los Desprendimientos Rocosos en la Cala de Banyalbufar. Boletín Geológico y Minero. Marzo–Abril de 1997, pp. 39–51

  • Flageollet JC, Maquaire O, Martin B, Weber D (1999) Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France). Geomorphology 30:65–78

    Article  Google Scholar 

  • Frayssines M, Hantz D (2006) Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Rangers (French Alps). Eng Geol 86(4):256–270

    Article  Google Scholar 

  • Gelabert B, Sabat F, Rodríguez-Perea A (1992) A structural outline of the Serra de Tramuntana of Mallorca (Balearic Islands). Tectonophysics 203:167–183

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Cipolla F, Sebastiani C, Galli M, Salvati P (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng Geol 73(3–4):229–245

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267

    Article  Google Scholar 

  • Keiler M, Knight J, Harrison S (2010) Climate change and geomorphological hazards in the eastern European Alps. Phil Trans Math Phys Eng Sci 368(1919):2461–2479

    Article  Google Scholar 

  • Krautblatter M, Moser M (2009) A non linear model coupling rockfall and rainfall intensity based on a four year measurement in a high Alpine rock wall (Reintal, German Alps). Nat Hazards Earth Syst Sci 9(4):1425–1432

    Article  Google Scholar 

  • Mateos RM (2002) Slope movements in the Majorca Island (Spain). Hazard analysis. In: McInnes RG, Jakeways J (eds) Instability, planning and management: seeking sustainable solutions to ground movements problems. Ventnor, UK

    Google Scholar 

  • Mateos RM, Ferrer M, González de vallejo L (2003) Los materiales rocosos de la Sierra de Tramuntana (Mallorca). Caracterización Geomecánica y Clasificación Geotécnica. Boletín Geológico y Minero 113(4):415–427

    Google Scholar 

  • Mateos RM, Azañón JM (2005) Los movimientos de ladera en la Sierra de Tramuntana de la Isla de Mallorca: tipos, características y factores condicionantes. Revista de la Sociedad Geológica de España 18(1–2):89–99

    Google Scholar 

  • Mateos, R.M. (2006) Los movimientos de ladera en la Serra de Tramuntana (Mallorca). Caracterización geomecánica y análisis de peligrosidad. Tesis doctoral. Colección Digital de Tesis de la Universidad Complutense de Madrid

  • Mateos RM, Giménez J (2007) El deslizamiento de Biniarroi (Mallorca) de 1721. Revista de la Sociedad Geológica de España 20(1–2):3–16

    Google Scholar 

  • Mateos RM, Azañón M, Morales R, López-Chicano M (2007) Regional prediction of landslides in the Tramuntana Range (Majorca) using probability analysis of intense rainfall. Z Geomorph N F 51(3):287–306

    Article  Google Scholar 

  • Mateos RM, Giménez J, Tsige M, Azañón JM (2008) Grandes deslizamientos históricos en la isla de Mallorca: Biniarroi, 1721. Geo-Temas 10(2008):1567–5172

    Google Scholar 

  • Mateos RM, Bermejo M, Hijazo T, Rodríguiez-Franco JA, Ferrer M, González de Vallejo LI, García-Moreno I (2009) Los deslizamientos de la ladera de la margen izquierda del torrente de Fornalutx (Mallorca). Boletín Geológico y Minero 119(4):443–458

    Google Scholar 

  • Mateos RM, García-Moreno I, Azañón JM, Tsige M (2010) La avalancha de rocas de Son Cocó (Alaró, Mallorca). Descripción y análisis del movimiento. Boletín Geológico y Minero 121(2):153–168

    Google Scholar 

  • Orozco M, Azañón JM, Azor A, y Alonso-Chaves F (2002) Geología Física. Paraninfo Thomson Learning Eds., p. 187

  • Paronuzzi P, Coccolo A, Garlatti G (1998) Eventi meteorici critici e debris flows nei bacini montani del Friuli. L´ Acqua Sezione I Memorie. 39–50

  • Portilla M, Chevalier G, Hürlimann M (2010) Description and analysis of the debris flows occurred during 2008 in the Eastern Pyrenees. Nat Hazards Earth Syst Sci 10:1635–1645

    Article  Google Scholar 

  • Saro Lee, Ueechan Chwae, Kyungduck Min (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46(3–4):149–162

    Google Scholar 

  • Schneuwly DM, Stoffel M (2008) Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Nat Hazards Earth Syst Sci 8:203–211

    Article  Google Scholar 

  • Shang Y, Park H-D, Yang Z, Yang J (2005) Distribution of landslides adjacent to the northern side of the Yarlu Tsangpo Grand Canyon in Tibet, China. Environ Geol 48(6):721–741

    Google Scholar 

  • Shihi S, Guzzetti F, Reichenbach P (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, central Italy. Environ Manage 34(2):191–208

    Article  Google Scholar 

  • Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian Dolomites since the Late glacial. Catena 55:141–161

    Article  Google Scholar 

  • Turcotte DL, Malamud BD, Guzzetti F, Reichenbach P (2006) A general landslide distribution applied to a small inventory in Todi, Italy. Geological Society 261:105–111, Special Publications

    Article  Google Scholar 

  • Wieczorek GF, Jäger S (1996) Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology 15(1):17–31

    Article  Google Scholar 

  • Yong L, Xiaoyi F, Genwei C (2006) Landslide and rockfall distribution by reservoir of stepped hydropower station in the Jinsha River. Wuhan University Journal of Natural Sciences 11(4):801–805

    Article  Google Scholar 

  • Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43(3–4):197–207

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been supported by the Spanish Scientific Council–CICYT (project CGL2008-03249/BTE). We acknowledge the support of the Emergency Service of the Balearic Islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa María Mateos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateos, R.M., García-Moreno, I. & Azañón, J.M. Freeze–thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain). Landslides 9, 417–432 (2012). https://doi.org/10.1007/s10346-011-0290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-011-0290-8

Keywords

Navigation