Skip to main content
Log in

Plant Secondary Metabolites as a Tool to Investigate Biotic Stress Tolerance in Plants: A Review

Pflanzliche Sekundärmetaboliten als Mittel zur Untersuchung der biotischen Stresstoleranz bei Pflanzen: ein Überblick

  • Review Article / Übersichtsbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Plants have a large diversity of metabolites in order to carry out the complicated plant metabolic pathway in a coordinated manner under normal as well as stressful conditions. These metabolites are further subdivided into primary metabolites which are responsible the for main metabolic pathways that are critical for the survival of plants and secondary metabolites which are not necessary for the main metabolic pathway for growth and development but are involved in developing the ability of the plants to interact with the surrounding adverse environment. Plants produce a diversity of secondary metabolites (PSMs) that serve as defense compounds against herbivores and microorganisms. In addition, some PSMs attract animals for pollination and seed dispersal. Pathogens gain entry into host cell, reproduce there and use biological machinery of host plants which is threat to global crop production. Integrated management strategies based upon minimizing population and use of resistant cultivars can address this potential problem. In the developing world, farmers are less likely to adopt these approaches instead they prefer the use of chemical pesticides. Reckless use of chemical pesticides is destroying our ecosystem, which is why ecofriendly alternatives, like plant-based metabolites to control pathogens, must be explored. Studies conducted on different plant metabolites reported that these metabolites can potentially combat plant pathogens. In this study, we also discuss some of the plant secondary metabolites including alkaloids, flavonoids and phenolics, and antioxidant enzymes like peroxidase, polyphenol oxidase, and chitinase.

Zusammenfassung

Pflanzen verfügen über eine große Vielfalt an Metaboliten, die die komplizierten pflanzlichen Stoffwechselwege sowohl unter normalen als auch unter stressigen Bedingungen koordiniert ablaufen lassen. Diese Metaboliten werden weiter unterteilt in primäre Metaboliten, die für die wichtigsten Stoffwechselwege verantwortlich sind, die für das Überleben der Pflanzen äußerst wichtig sind, und sekundäre Metaboliten, die für die wichtigsten Stoffwechselwege für Wachstum und Entwicklung nicht notwendig sind, aber an der Entwicklung der Fähigkeit der Pflanzen beteiligt sind, mit der umgebenden ungünstigen Umwelt zu interagieren. Pflanzen produzieren eine Vielzahl von Sekundärmetaboliten (PSM), die als Abwehrstoffe gegen Pflanzenfresser und Mikroorganismen dienen. Darüber hinaus locken einige PSM Tiere zur Bestäubung und Samenverbreitung an. Krankheitserreger dringen in die Wirtszelle ein, vermehren sich dort und nutzen die biologische Maschinerie der Wirtspflanzen, was eine Bedrohung für die weltweite Pflanzenproduktion darstellt. Integrierte Bewirtschaftungsstrategien, die auf der Minimierung der Population und der Verwendung resistenter Sorten basieren, können dieses potenzielle Problem lösen. In den Entwicklungsländern sind die Landwirte weniger geneigt, diese Ansätze zu übernehmen, sondern bevorzugen den Einsatz von chemischen Pestiziden. Der rücksichtslose Einsatz von chemischen Pestiziden zerstört unser Ökosystem. Deshalb müssen umweltfreundliche Alternativen erforscht werden, z. B. pflanzliche Stoffwechselprodukte zur Bekämpfung von Krankheitserregern. Studien zu verschiedenen Pflanzenmetaboliten haben ergeben, dass diese Metaboliten potenziell Pflanzenpathogene bekämpfen können. In dieser Studie haben wir auch einige pflanzliche Sekundärmetaboliten wie Alkaloide, Flavonoide und Phenole sowie antioxidative Enzyme wie Peroxidase, Polyphenoloxidase und Chitinase untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubble and microbubble. J Soil Sci Plant Nutr 21:389–403

    Article  CAS  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2022) Biosorptive Removal of Cadmium Ions from hydroponic Solution with indigenous garlic peel and mercerized garlic peel on lettuce productivity. Sci Horti 293:110727

    Article  CAS  Google Scholar 

  • Adel MM, Sehnal F, Jurzysta M (2000) Effects of alfalfa saponins on the moth Spodoptera littoralis. J Chem Ecol 26:1065–1078

    Article  CAS  Google Scholar 

  • Adrian M, Jeandet P, Veneau J, Westo LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702

    Article  CAS  Google Scholar 

  • Ahmad G, Khan AA, Mohamed HI (2021a) Impact of the low and high concentrations of fly ash amended soil on growth, physiological response and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ Sci Poll Res 28:17068–17083

    Article  CAS  Google Scholar 

  • Ahmad G, Khan A, Khan AA, Ali A, Mohhamad HI (2021b) Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek 114:885–912

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hung 68(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22:1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Alhanout K, Malesinki S, Vidal N, Peyrot V, Rolain JM, Brunel JM (2010) New insights into the antibacterial mechanism of action of squalamine. J Antimicrob Chemother 65:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 212:29–37

    Article  PubMed  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012) Ascorbic acid of seeds and proteins of leaves as biochemical markers for resistance of flax to powdery mildew disease. Romanian Agri Res 29:63–69

    Google Scholar 

  • Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. J Phytopathol 161:376–381

    Article  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz 69(1):47–52

    Article  CAS  Google Scholar 

  • Amer A, Ghoneim M, Shoala T, Mohamed HI (2021) Comparative studies on French basil (Ocimum basilicum L. cv. Grand verde) as affected by alternatives spraying with humic, salicylic, and glycyrrhizic acids and their nanocomposites. Environ Sci Pollu Res 28:47196–47212

    Article  CAS  Google Scholar 

  • Anttila AK, Pirttilä AM, Häggman H, Harju A, Venäläinen M, Haapala A, Holmbom B, Julkunen TR (2013) Condensed conifer tannins as antifungal agents in liquid culture. Holzforschung 67(7):825–832

    Article  CAS  Google Scholar 

  • Atkinson NJ, Jain R, Urwin PE (2015) The response of plants to simultaneous biotic and abiotic stress. Combined stresses in plants. Springer, Cham, pp 181–201

    Google Scholar 

  • Balint-Kurti P (2019) The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol 20(8):1163–1178

    PubMed  PubMed Central  Google Scholar 

  • Ballester AR, Lafuente MT, González-Candelas L (2013) Citrus phenylpropanoids and defence against pathogens. Part II: Gene expression and metabolite accumulation in the response of fruits to Penicillium digitatum infection. Food Chem 136:285–291

    Article  CAS  PubMed  Google Scholar 

  • Bano C, Singh NB, Sunaina S (2016) Differential responses of pea seedlings to salicylic acid under UV‑B stress. Trop Plant Res 3(3):586–591

    Article  Google Scholar 

  • Bano C, Amist N, Singh NB, Sunaina S (2017) UV‑B radiation escalates allelopathic effect of benzoic acid on Solanum lycopersicum L. Sci Hort 220:199–205

    Article  CAS  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32(1):216–232

    Article  CAS  Google Scholar 

  • Bashandy SR, Abd-Alla MH, Dawood MF (2020) Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Applied Soil Ecol 154:103654

    Article  Google Scholar 

  • Belofsky G, Kolaczkowski M, Adams E, Schreiber J, Eisenberg V, Coleman CM, Zou Y, Ferreira D (2013) Fungal ABC transporter-associated activity of isoflavonoids from the root extract of Dalea formosa. J Nat Prod 76(5):915–925

    Article  CAS  PubMed  Google Scholar 

  • Beno-Moualem D, Prusky D (2000) Early events during quiescent infection development by Colletotrichum gloeosporioides in unripe avocado fruits. Phytopathology 90:553–559

    Article  CAS  PubMed  Google Scholar 

  • Bi B, Tang J, Han S, Guo J, Miao Y (2017) Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. BMC Plant Biol 17(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  • Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C, Venturi V (2015) The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front Plant Sci 6:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Inter J Mol Sci 16:26378–26394

    Article  CAS  Google Scholar 

  • Carrington Y, Guo J, Le CH, Fillo A, Kwon J, Tran LT, Ehlting J (2018) Evolution of a secondary metabolic pathway from primary metabolism: shikimate and quinate biosynthesis in plants. Plant J 95:823–833

    Article  CAS  Google Scholar 

  • Caruso F, Mendoza L, Castro P, Cotoras M, Aguirre M, Matsuhiro B, Isaacs M, Rossi M, Viglianti A, Antonioletti R (2011) Antifungal activity of resveratrol against Botrytis cinerea is improved using 2‑Furyl derivatives. Plos One 6:10

    Article  Google Scholar 

  • Chepkirui C, Matasyoh JC, Wagara IN, Nakavuma J (2014) Antifungal activity of flavonoids isolated from Monanthotaxis littoralis against mycotoxigenic fungi from maize. Am J Chem Appl 1(4):54–60

    Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chiu CM, You BJ, Chou CM, Yu PL, Yu FY, Pan SM, Bostock RM, Chung KR, Lee MH (2013) Redox status-mediated regulation of gene expression and virulence in the brown rot pathogen Monilinia fructicola. Plant Pathol 62(4):809–819

    Article  CAS  Google Scholar 

  • Chungloo D, Tisarum R, Samphumphuang T, Sotesaritkul T, Cha-Um S (2021) Regulation of curcuminoids, photosynthetic abilities, total soluble sugar, and rhizome yield traits in two cultivars of turmeric (Curcuma longa) using exogenous foliar paclobutrazol. Not Bot Horti Agrobot Cluj Napoca 49(3):12445

    Article  CAS  Google Scholar 

  • Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E (2010) Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushnie T, Cushnie B, Lamb A (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing, and antivirulence activities. Inter J Antimicrob Agents 44:377–386

    Article  CAS  Google Scholar 

  • Davin LB, Jourdes M, Patten AM, Kim KW, Vassão DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25:1015–1090

    Article  CAS  PubMed  Google Scholar 

  • Dhawi F, El-Beltagi HS, Abdel-Mobdy YE, Salah SM, Ghaly IS, Abdel-Rahim EA, Soliman AM, Mohamed HI (2021) Synergistic impact of the pomegranate peels and its nanoparticles against the infection of Tobacco Mosaic Virus (TMV). Fresenius Environ Bull 30(1):731–746

    CAS  Google Scholar 

  • Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W (2016) Essential oils’ chemical characterization and investigation of some biological activities: a critical rev med. Medicines 3(4):25

    Article  PubMed Central  Google Scholar 

  • Dos Santos C, Vargas Á, Fronza N, Dos SJHZ (2017) Structural, textural and morphological characteristics of tannins from Acacia mearnsii encapsulated using sol-gel methods: applications as antimicrobial agents. Colloids Surf B Biointerfaces 151:26–33

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (2018) Interaction of chemical pesticides and their formulation ingredients with microbes associated with plants and plant pests. J Agric Food Chem 66(29):7553–7561

    Article  CAS  PubMed  Google Scholar 

  • Easwar RD, Divya K, Prathyusha IVSN, Krishna RC, Chaitanya KV (2017) Insect-resistant plants. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 47–74

    Chapter  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Abdelazeem AS, Youssef R, Safwat G (2019a) GC-MS analysis, antioxidant, antimicrobial and anticancer activities of extracts from Ficus sycomorus fruits and leaves. Not Bot Horti Agrobot Cluj Napoca 47(2):493–505

    Article  CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Elmelegy AA, Eldesoky SE, Safwat G (2019b) Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia ficus Indicia) pulp and peel. Fresenius Environ Bull 28(2A):1534–1551

    Google Scholar 

  • El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd and Pb contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res 28(47):67608–67631

    Article  CAS  Google Scholar 

  • El-Rahman ASS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354

    Article  Google Scholar 

  • El-Rahman ASS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. European J Plant Pathol 134(1):105–116

    Article  Google Scholar 

  • Fahed L, Beyrouthy ME, Ouaini N, Eparvier V, Stien D, Vitalini S, Iriti M (2021) Antimicrobial activity and synergy investigation of Hypericum scabrum essential oil with antifungal drugs. Molecules 26:6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Wang L, Ishikawa R (2019) Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 569:265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Pathol Microbiol. https://doi.org/10.1094/phi-i-0226-01

    Article  Google Scholar 

  • Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA (2011a) Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc Natl Acad Sci U S A 108:20814–20819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA (2011b) Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol 190:627–639

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 5(31):6697–6703

    CAS  Google Scholar 

  • Ghonaim MM, Mohamed HI, Omran AAA (2021) Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68:227–242

    Article  CAS  Google Scholar 

  • Giebel J (1982) Mechanism of resistance to plant nematodes. Annu Rev Phytopathol 20(1):257–279

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Goleniowski M, Bonfill M, Cusido R, Palazón J (2013) Phenolic acids. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin/Heidelberg

    Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruiz K (1996) Fungitoxic activity of Saponins: practical use and fundamental principles, saponins used in traditional and modern medicine. Springer, Berlin, pp 527–534

    Book  Google Scholar 

  • Hamed MM, El-Mobdy AMA, Kamel MT, Mohamed HI, Bayoumi AE (2019) Phytochemical and biological activities of two asteraceae plants Senecio vulgaris and Pluchea dioscoridis L. Pharmacology 2:101–121

    CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant–insect chemical interactions. Phytochem Rev 2:321–330

    Article  CAS  Google Scholar 

  • He Y, Hu Z, Li A, Zhu Z, Yang N, Ying Z, He J, Wang C, Yin S, Cheng S (2019) Recent advances in biotransformation of saponins. Molecules 24:2365

    Article  CAS  PubMed Central  Google Scholar 

  • Helmi A, Mohamed HI (2016) Biochemical and ulturasturctural changes of some tomato cultivars to infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiya, Egypt. Gesunde Pflanz 68:41–50

    Article  CAS  Google Scholar 

  • Hernandez-Cumplido J, Giusti MM, Zhou Y, Kyryczenko-Roth V, Chen YH, Rodriguez-Saona C (2018) Testing the ‘plant domestication-reduced defense’ hypothesis in blueberries: the role of herbivore identity. Arthropod Plant Interact 12(4):483–493

    Article  Google Scholar 

  • Hodaei M, Rahimmalek M, Arzani A, Talebi M (2018) The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind Crops Prod 120:295–304

    Article  CAS  Google Scholar 

  • Hussain T, Khan AA, Mohamed HI (2022) Potential efficacy of biofilm-forming biosurfactant Bacillus firmus HussainT-Lab.66 against Rhizoctonia solani and mass spectrometry analysis of their metabolites. Int J Peptide Res Therap 28:3. https://doi.org/10.1007/s10989-021-10318-5

    Article  CAS  Google Scholar 

  • Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan R, Asaf S, Numan M, Kim KM (2021) Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11:968

    Article  CAS  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Ann Rev Phytopathol 40:411–441

    Article  CAS  Google Scholar 

  • Jha Y (2018) Induction of anatomical, enzymatic, and molecular events in maize by PGPR under biotic stress. P 125–141. In: Meena V (ed) Role of rhizospheric microbes in soil. Springer, Singapore, p 398

    Google Scholar 

  • Jha Y (2019a) Higher induction of defense enzymes and cell wall reinforcement in maize by root associated bacteria for better protection against Aspergillus niger. J Plant Prot Res 59(3):341–349

    CAS  Google Scholar 

  • Jha Y (2019b) Endophytic bacteria mediated anti-autophagy and induced catalase, β‑1, 3‑glucanases gene in paddy after infection with pathogen Pyricularia grisea. Ind Phytopathol 72(1):99–106

    Article  Google Scholar 

  • Jha Y (2019c) Endophytic bacteria-mediated regulation of secondary metabolites for the growth induction in Hyptis suaveolens under stress. In: Egamberdieva D, Tiezzi A (eds) Medically important plant biomes: source of secondary metabolites. Microorganisms for Sustainability, vol 15. Springer, Singapore

    Google Scholar 

  • Jha Y (2019d) Regulation of water status, chlorophyll content, sugar, and photosynthesis in maize under salinity by mineral mobilizing bacteria. In: Book photosynthesis productivity and environmental stress, pp 75–93

    Chapter  Google Scholar 

  • Jha Y (2020) Plant microbiomes with phytohormones attribute for plant growth and adaptation under the stress conditions. In: Agriculture, microorganisms for sustainability, pp 85–103

    Google Scholar 

  • Jha Y (2021) Macrophytes as a potential tool for crop production by providing nutrient as well as protection against common phyto pathogen. Highlights Biosci. https://doi.org/10.36462/H.BioSci.202103

    Article  Google Scholar 

  • Jha Y, Yadav AN (2021) Piriformospora indica: biodiversity, ecological significances, and biotechnological applications for agriculture and allied sectors. In: Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z (eds) Industrially important fungi for sustainable development. Fungal biology. Springer, Cham

    Google Scholar 

  • Jha Y, Dehury B, Kumar SPJ, Chaurasia A, Singh UB, Yadav MK, Angadi UB, Ranjan R, Tripathy M, Subramanian RB, Kumar S, Simal-Gandara J (2021) Delineation of molecular interactions of plant growth promoting bacteria induced β‑1,3‑glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Mol Biol Rep. https://doi.org/10.1007/s11033-021-07059-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanno H, Hasegawa M, Kodama O (2012) Accumulation of salicylic acid, jasmonic acid and phytoalexins in rice, Oryza sativa, infested by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47(1):27–34

    Article  CAS  Google Scholar 

  • Khare S, Singh NB, Singh A, Hussain I, Niharika K, Yadav V, Bano C, Yadav RK, Amist N (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 63(3):203–216

    Article  CAS  Google Scholar 

  • Kisiriko M, Anastasiadi M, Terry LA, Yasri A, Beale MH, Ward JL (2021) Phenolics from medicinal and aromatic plants: characterisation and potential as biostimulants and bioprotectants. Molecules 26:6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B (2000) Linear β‑1, 3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124(3):1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korchowiec B, Gorczyca M, Wojszko K, Janikowska M, Henry M, Rogalska E (2015) Impact of two different saponins on the organization of model lipid membranes. Biochim Biophys Acta Biomembr 1848:1963–1973

    Article  CAS  Google Scholar 

  • Kumar CM, Singh SA (2015) Bioactive lignans from sesame (Sesamum indicum L.): evaluation of their antioxidant and antibacterial effects for food applications. J Food Sci Technol 52(5):2934–2941

    Article  Google Scholar 

  • Laohavisit A, Wakatake T, Ishihama N (2020) Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature 587:92–97

    Article  CAS  PubMed  Google Scholar 

  • Latef AAAH, Dawood MF, Hassanpour H, Rezayian M, Younes NA (2020) Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology 9(7):172

    Article  CAS  PubMed Central  Google Scholar 

  • Lee MH, Bostock RM (2007) Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp.: a role for cellular redox? Phytopathology 97(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Joo Y, Kim SG, Baldwin IT (2017) What happens in the pith stays in the pith: tissue -localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant J 92:414–425

    Article  CAS  PubMed  Google Scholar 

  • Leváková L, Lacko-Bartošová M (2017) Phenolic acids and antioxidant activity of wheat species: a review. Agriculture 63(3):92–101

    Google Scholar 

  • Li B, Fan R, Sun G (2021) Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species. Plant Soil 461:389–405

    Article  CAS  Google Scholar 

  • Lincoln JE, Sanchez JP, Zumstein K, Gilchrist DG (2018) Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Mol Plant Path 19(9):2111–2123

    Article  CAS  Google Scholar 

  • Livne B et al (1997) TMV-induced expression of tobacco β‑glucanase promoter activity is mediated by a single inverted, GCC motif. Plant Sci 130(2):159–169

    Article  CAS  Google Scholar 

  • Long SY, Li CL, Hu J, Zhao QJ, Chen D (2018) Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia 129:145–149

    Article  CAS  PubMed  Google Scholar 

  • Lusso M, Kuc J (1995) Evidence for transcriptional regulation of β‑1, 3‑glucanase as it relates to induced systemic resistance of tobacco to blue mold. Mol Plant Microbe Interact 8(3):473–475

    Article  CAS  Google Scholar 

  • Maatalah MB, Bouzidi NK, Bellahouel S, Merah B, Fortas Z, Soulimani R, Saidi S, Derdour A (2012) Antimicrobial activity of the alkaloids and saponin extracts of Anabasis articulate. J Biotechnol Pharm Res 3:54–57

    Google Scholar 

  • Maddox CE, Laur LM, Tian L (2010) Antibacterial activity of phenolic compounds against the Phytopathogen Xylella fastidiosa. Curr Microbiol 60(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  PubMed  Google Scholar 

  • Mandhania S, Sangwan RS, Siwach SS, Pundir SR, Sangwan O, Janu A (2018) Role of biochemical constituents and minerals against cotton leaf curl disease in cotton. J Environ Biol 39:221–227

    Article  CAS  Google Scholar 

  • Mansour MTM, Aly AA, Habeb MM, Mohamed HI (2020) Control of cotton seedling damping-off by treating seed with inorganic salts. Gesunde Pflanz 72:273–283

    Article  CAS  Google Scholar 

  • Marques JP, Hoy JW, Appezzato-da-Glória B, Viveros AF, Vieira ML, Baisakh N (2018) Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Frontiers Plant Sci 23(9):698

    Article  Google Scholar 

  • Matsuura HN, Fett-Neto AG (2015) Plant alkaloids: main features, toxicity, and mechanisms of action. Plant Toxins. https://doi.org/10.1007/978-94-007-6728-7_2-1

    Article  Google Scholar 

  • Mayer AM, Staples RC, Gil-ad NL (2001) Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Mendes IDS, Rezende MOO (2014) Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as post emergent bioherbicides: a green alternative for sustainable agriculture. J Environ Sci Health Part B 49(5):374–380

    Article  CAS  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Miele S, Tegli S, Izquierdo CG, Cerboneschi M, Bargiacchi E (2019) Hydrolysable tannins in agriculture. Tannins-structural properties, biological properties and current knowledge

    Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogazy AM, Mohamed HI, El-Mahdy OM (2022) Calcium and iron nanoparticles: a positive modulator of innate immune responses in strawberry plants against Botrytis cinerea. Process Biochem 115:128–145

    Article  CAS  Google Scholar 

  • Mohamed HI (2011). Molecular and Biochemical Studies on the Effect of Gamma Rays on Lead Toxicity in Cowpea (Vigna sinensis) Plants. Biol Trace Elem Res 144:1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Mohamed H, Abd-El Hameed AG (2014) Molecular and biochemical markers of some Vicia faba L. genotype in response to storage insect pests infestation. J Plant Int 9(1):618–626

    CAS  Google Scholar 

  • Mohamed HI, Abdel-Hamid AME (2013) Molecular and biochemical studies for heat tolerance on four cotton genotypes (Gossypium hirsutum L.). Romanian Biotechnol Lett 18(6):7223–7231

    Google Scholar 

  • Mohamed HI, Akladious SA (2014). Influence of garlic extract on enzymatic and non enzymatic antioxidants in soybean plants (Glycine max) grown under drought stress. Life Sci J 11(3s):46–58

    Google Scholar 

  • Mohamed HI, Elsherbiny EA, Abdelhamid MT (2016) Physiological and biochemical responses of Vicia faba plants to foliar application with zinc and iron. Gesunde Pflanz 68:201–212

    Article  CAS  Google Scholar 

  • Mohamed HI, Akladious SA, Ashry NA (2018) Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-based markers. Gesunde Pflanz 70:205–215

    Article  CAS  Google Scholar 

  • Mohamed HI, Mohammed AHM, Mohamed NM, Ashry NA, Zaky LM, Mogazy AM (2021) Comparative effectiveness of potential elicitors of soybean plant resistance against Spodoptera Littoralis and their effects on secondary metabolites and antioxidant defense system. Gesunde Pflanz 73:273–285

    Article  CAS  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Boil 49(6):439–462

    Article  CAS  Google Scholar 

  • Moustafa-Farag M, Mohamed HI, Mahmoud A, Elkelish A, Misra AN, Guy KM, Kamran M, Ai S, Zhang M (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 9(6):724

    Article  CAS  PubMed Central  Google Scholar 

  • Naeem M, Basit A, Ahmad I, Mohamed HI, Wasila H (2020) Effect of salicylic acid and salinity stress on the performance of tomato. Gesunde Pflanz 72:393–402

    Article  CAS  Google Scholar 

  • Narayani M, Srivastava S (2017) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16:1227–1252

    Article  CAS  Google Scholar 

  • Nawrot J, Harmatha J (2012) Phytochemical feeding deterrents for stored product insect pests. Phytochem Rev 11:543–566

    Article  CAS  Google Scholar 

  • Ogawa S, Yazaki Y (2018) Tannins from Acacia mearnsii De wild. Bark: tannin determination and biological activities. Molecules 23(4):E837

    Article  PubMed  Google Scholar 

  • Ohri P, Pannu SK (2010) Effect of phenolic compounds on nematodes—a review. J Appl Nat Sci 2(2):344–350

    Article  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Peperidou A, Pontiki E, Hadjipavlou-Litina D, Voulgari E, Avgoustakis K (2017) Multifunctional cinnamic acid derivatives. Molecules 22(8):1247

    Article  PubMed Central  Google Scholar 

  • Pott DM, Osorio S, Vallarino JG (2019) From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front Plant Sci 28(10):835

    Article  Google Scholar 

  • Pusztahely T, István H, Pócsi IJ (2017) Plant-fungal interactions: special secondary metabolites of the biotrophic, necrotrophic, and other specific interactions. In: Fungal metabolites. Academic Press, London, pp 1–58

    Google Scholar 

  • Qasim M, Islam W, Ashraf HJ, Ali I, Wang L (2020) Saponins in insect pest control. In: Co-evolution of secondary metabolites, pp 897–924

    Chapter  Google Scholar 

  • Rana KI, Farhana NA (2019) Chitinases potential as biocontrol. Biomed J Sci Tech Res 14(5):2629

    Google Scholar 

  • Reen FJ, Gutiérrez-Barranquero JA, Parages ML, Gara OF (2018) Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol 102(5):2063–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saddique M, Kamran M, Shahbaz M (2018) Differential responses of plants to biotic stress and the role of metabolites. In: Plant metabolites and regulation under environmental stress. Elsevier, San Diego, pp 69–87

    Google Scholar 

  • Sade D, Shriki O, Cuadros-Inostroza A, Tohge T, Semel Y, Haviv Y, Brotman Y (2014) Comparative metabolomics and transcriptomics of plant response to tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11(1):81–97

    Article  Google Scholar 

  • Santos PM, Batista DL, Ribeiro LA, Boffo EF, de Cerqueira MD, Martins D, de Castro RD, de Souz-Neta LC, Pinto EL, Zambotti-Villela E, Colepicolo P, Fernandez LG, Canuto GA, Ribeiro PR (2018) Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach. Ind Crop Prod 124:834–844

    Article  CAS  Google Scholar 

  • Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels AL (2014) Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166:798–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Serpa R, Franca EJ, Furlaneto-Maia L, Andrade CG, Diniz A, Furlaneto MC (2012) In vitro antifungal activity of the flavonoid baicalein against Candida species. J Med Microbiol 61:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed Central  Google Scholar 

  • Sherwood P, Bonello P (2013) Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea. Tree Physiol 33(8):845–854

    Article  CAS  PubMed  Google Scholar 

  • Silva AX, Jander G, Samaniego H, Ramsey JS, Figueroa CC (2012) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: aphididae) I: a transcriptomic survey. Plos One 7:e36366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Kaur A (2018) Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT 87:93–101

    Article  CAS  Google Scholar 

  • Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 5(2):129–151

    Article  PubMed  Google Scholar 

  • Singh RK, Rai N, Singh M, Singh SN, Srivastava K (2014) Selection of tomato genotypes resistant to tomato leaf curl virus disease using biochemical and physiological markers. J Agric Sci 153(04):646–655

    Article  Google Scholar 

  • Singh S, Kaur I, Kariyat R (2021) The multifunctional roles of polyphenols in plant-herbivore interactions. Int J Mol Sci 22:1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174(11):1244–1262

    Article  CAS  PubMed  Google Scholar 

  • Sofy MR, Mohamed HI, Dawood MFA, Abu-Elsaoud AM, Soliman MH (2021a) Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch Agronomy Soil Sci. https://doi.org/10.1080/03650340.2021.1949709

    Article  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey EE, Mohamed HI, El-Dougdoug NK (2021b) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10(3):459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltys D, Krasuska U, Bogatek R, Gniazdow A (2013) Allelochemicals asbio-herbicides—present and perspectives. In: Price AJ, Kelton JA (eds) Herbicides—current research and case studies in use. InTech, pp 517–542

    Google Scholar 

  • Sreij R, Dargel C, Schweins R, Pr’evost S, Dattani R, Hellweg T (2019) Aescincholesterol complexes in DMPC model membranes: a DSC and temperature dependent scattering study. Sci Rep 9:1–15

    Article  CAS  Google Scholar 

  • Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75

    Article  Google Scholar 

  • Suzuki K, Nomura I, Ninomiya M, Tanaka K, Koketsu M (2018) Synthesis and antimicrobial activity of b‑carboline derivatives with N2-alkyl modifications. Bioorg Med Chem Lett 28:2976–2978

    Article  CAS  PubMed  Google Scholar 

  • Tahsili J, Sharifi M, Safaie N, Esmaeilzadeh-Bahabadi S, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417

    Article  Google Scholar 

  • Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo SA, Karaman R (2019) The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 11(11):656

    Article  CAS  PubMed Central  Google Scholar 

  • Tiku AR (2018) Antimicrobial compounds and their role in plant defense. In: Singh A, Singh I (eds) Molecular aspects of plant-pathogen interaction. Springer, Singapore, pp 283–307

    Chapter  Google Scholar 

  • Tiku AR (2020) Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Cham

    Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres R, Teixidó N, Usall J, Abadias M, Mir M, Larrigaudiere C, Viñas I (2011) Antioxidant activity of oranges after infection with the pathogen Penicillium digitatum or treatment with the biocontrol agent Pantoea agglomerans CPA‑2. Biol Control 57:103–109

    Article  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Valentines MC, Vilaplana R, Torres R, Usall J, Larrigaudiere C (2005) Specific roles of enzymatic browning and lignifications in apple disease resistance. Postharvest Biol Technol 36:227–234

    Article  CAS  Google Scholar 

  • Valletta A, Iozia LM, Leonelli F (2021) Impact of environmental factors on stilbene biosynthesis. Plants 10(1):90

    Article  CAS  PubMed Central  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Vilanova L, Teixidó N, Torres R, Usall J, Viñas I (2012) The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. Int J Food Microbiol 157:360–367

    Article  CAS  PubMed  Google Scholar 

  • Viñas I, Abadias M, Teixidó N, Usall J, Torres R (2013) Aspectos Básicos de la Patología de la Poscosecha. In: Viñas I, Recasens I, Usall J, Graell J (eds) Poscosecha de manzana, pera y melocotón. Mundi Prensa, Madrid, pp 203–242

    Google Scholar 

  • Wan Z, Hu D, Li P, Xie D, Gan X (2015) Synthesis, antiviral bioactivity of novel 4‑thioquinazoline derivatives containing chalcone moiety. Molecules 20(7):11861–11874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sun R, Zhang Q, Luo Q, Zeng S, Li X, Liu Z (2018) An update on polyphenol disposition via coupled metabolic pathways. In: Expert opinion on drug metabolism & toxicology. Ashley, London, pp 1–15

    Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Taggar GK, Hussain B, Taggar MS, Nair RM, Sharma HC (2018) Plant defence against herbivory and insect adaptations. Aob Plants 10(4):ply37

    Google Scholar 

  • Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen J‑G, Muchero W (2018) Regulation of lignin biosynthesis and its role in growth-Defense Tradeoffs. Front Plant Sci 9:1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan H, Xie N, Zhong C, Su A, Hui X, Zhang X, Jin Z, Li Z, Feng J, He J (2018) Aphicidal activities of Amaryllidaceae alkaloids from bulbs of Lycoris radiata against Aphis citricola. J Ind Crop Prod 123:372–378

    Article  CAS  Google Scholar 

  • Younes NA, Dawood MF, Wardany AA (2019) Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere 228:318–327

    Article  CAS  PubMed  Google Scholar 

  • Younes NA, Dawood MF, Wardany AA (2020) The phyto-impact of fluazinam fungicide on cellular structure, agro-physiological, and yield traits of pepper and eggplant crops. Environ Sci Pollu Res 27(15):18064–18078

    Article  CAS  Google Scholar 

  • Zabalza A, Orcaray L, Fernández-Escalada M, Zulet-González A, Royuela M (2017) The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem Physiol 141:96–102

    Article  CAS  PubMed  Google Scholar 

  • Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: promising natural compounds against viral infections. Arch Virol 162(9):2539–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  CAS  PubMed  Google Scholar 

  • Zuzarte M, Vale-Silva L, Goncalves MJ, Cavaleiro C, Vaz S, Canhoto J, Pinto E, Salgueiro L (2012) Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur J Clin Microbiol Infect Dis 31(7):1359–1366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

Y. Jha and H.I. Mohamed declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, Y., Mohamed, H.I. Plant Secondary Metabolites as a Tool to Investigate Biotic Stress Tolerance in Plants: A Review. Gesunde Pflanzen 74, 771–790 (2022). https://doi.org/10.1007/s10343-022-00669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00669-4

Keywords

Schlüsselwörter

Navigation