Skip to main content
Log in

Potential Efficacy of Biofilm-Forming Biosurfactant Bacillus firmus HussainT-Lab.66 Against Rhizoctonia solani and Mass Spectrometry Analysis of its Metabolites

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Soil-borne pathogens that once persist in the soil cause severe economic losses in agriculture production worldwide including potatoes. Therefore, biological control of plant pathogens assumes greater importance at this juncture. In vitro screening tests were carried out with new potential species of Bacillus firmus HussainT-Lab.66 against black scurf of potato to investigate the biocontrol efficacy. The new biofilm-based bioagent inhibits the growth of Rhizoctonia solani by 87.70% ± 0.20 under the dual culture test. There was a significant positive effect of the new antagonistic bacteria against the pathogen. Through Thin layer chromatography and Fourier transform infrared spectroscopy, the biosurfactant was characterized as lipopeptide further confirming the presence of surfactin through Liquid chromatography-mass spectrometry. A remarkable 71% and 45% reduction in disease incidence under pot and field conditions, respectively, were noticed displaying a remarkable effect of the new bioagent against black scurf of potato tubers. These results indicated that the new bioagent was suppressing the disease incidence. These new bio-agents may be further explored commercially and proteomic techniques can also be applied to investigate the effects on cell membrane proteins of various bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data associated with the work were mentioned in the manuscript.

Abbreviations

TLC:

Thin layer chromatography

FTIR:

Fourier transform infrared spectroscopy analysis

LCMS–ESI:

Liquid chromatography–mass spectrometry

References

  • Abd El- Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354

    CAS  Google Scholar 

  • Abd El- Rahman SS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defense related enzymes and phenolic compounds in lupine (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134:105–116

    CAS  Google Scholar 

  • Abdlla ME, Tohmy AM, Rashid IA, Ahmed NE (2017) Morphological and molecular characterization of potato black scurf disease (Rhizoctonia solani) in Egypt. J Plant Prot Pathol Mansoura Univ 8(9):473–478

    Google Scholar 

  • Agha MS, Abbas MA, Sofy MR, Haroun SA, Mowafy AM (2021) Dual inoculation of Bradyrhizobium and Enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Notulae Botan Horti Agrobotanici Cluj-Napoca 49:12461. https://doi.org/10.15835/nbha49312461.

  • Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G (2016) Surfactin variants mediate species specific biofilm formation and root colonization in Bacillus. Environ Microbiol 18:264–2645

    Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz 69(1):47–52

    CAS  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28(2):149–155

  • Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. J Phytopathol 161:376–81

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44(7):1818–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395

    CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:1–18

    Google Scholar 

  • Biniarz P, Łukaszewicz M, Janek T (2017) Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol 37:393–410

    CAS  PubMed  Google Scholar 

  • Bodour AA, Maier RM (1998) Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant—producing microorganisms. J Microbiol Methods 32:273–280

    CAS  Google Scholar 

  • Cappelli C, Corazza L, Luongo L, Stravato V (1999) Interactions between crucifers and Rhizoctonia solani AG 2–1, AG 2–2IIIB, AG 2–2IV, AG 4. Phytopathol Medit 38(1):37–39

    Google Scholar 

  • Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302. https://doi.org/10.3389/fmicb.2019.00302

    Article  PubMed  PubMed Central  Google Scholar 

  • D’aes J, Maeyer KD, Pauwelyn E, Höfte M (2010) Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372

    PubMed  Google Scholar 

  • D’aes J, Hua GKH, De Mayer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LEP, Thomashow LS, Mavrodi DV, Hofte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine and cyclic lipopetide-producing Pseudomonas CMR12a. Phytopathol 101:996–1004

    Google Scholar 

  • Desmyttere H, Deweer C, Muchembled J, Sahmer K, Jacquin J, Coutte F, Jacques P (2019) Antifungal activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis strains possessing different tebuconazole sensitivity. Front Microbiol 10:2327. https://doi.org/10.3389/fmicb.2019.02327

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz De Rienzo MA, Banat IM, Dolman B et al (2015) Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. New Biotechnol 32:720–726

    Google Scholar 

  • El-Beltagi HS, Mohamed HI, Safwat G, Gamal M, Megahed BMH (2019) Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanz 71:113–122

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Safwat G, Megahed BMH, Gamal M (2018) Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Fresenius Environ Bull 27(9):6369–6378

  • El-Beltagi HS, Sofy MR, Aldaej MI, Mohamed HI (2020) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12:4732. https://doi.org/10.3390/su12114732

    Article  CAS  Google Scholar 

  • El-Sheshtawy HS, Sofy MR, Ghareeb DA, Yacout GA, Eldemellawy MA, Ibrahim BM (2021) Eco-friendly polyurethane acrylate (PUA)/natural filler-based composite as an antifouling product for marine coating. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-021-11501-w

    Article  PubMed  Google Scholar 

  • Fall R, Kinsinger RF, Wheeler KA (2003) A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots. Syst Appl Microbiol 27:372–379

    Google Scholar 

  • Franzetti A, Gandolfi I, Fracchia L, Van Hamme J, Gkorezis P, Marchant R, et al (2014) Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In: Kosaric N, Sukan FV (eds) Biosurfactants: production and utilization—processes, technologies, and economics, Chap. 17. CRC Press, Boca Raton, pp 361–366

  • Gajbhiye A, Rai AR, Meshram SU, Dongre AB (2010) Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum. World J Microbiol Biotechnol 26:1187–1194

    CAS  PubMed  Google Scholar 

  • Ghaffari H, Gholizadeh A, Biabani A, Fallah A, Mohammadian M (2018) Plant growth promoting rhizobacteria (PGPR) application with different nitrogen fertilizer levels in rice (Oryza sativa L.). Pertanika J Trop Agric Sci 41:715–728

    Google Scholar 

  • Ghojavand H, Vahabzadeh F, Mehranian M, Radmehr M, Shahraki KA, Zolfagharian F, Emadi MA, Roayaei E (2008) Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria. Appl Microbiol Biotechnol 80:1073–1085

    CAS  PubMed  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. https://doi.org/10.4061/2011/653654

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmi A, Mohamed HI (2016) Biochemical and ultrastructural changes of some tomato cultivars to infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiya, Egypt. Gesunde Pflanz 68:41–50

    CAS  Google Scholar 

  • Hollomon DW (2015) Fungicide resistance: facing the challenge. Plant Protect Sci 51:170–176

    CAS  Google Scholar 

  • Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Řezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516

    PubMed  Google Scholar 

  • Hussain T, Akhtar N, Aminedi R, Danish M, Nishat Y, Patel S (2020e) Role of the potent microbial based bio agent and their emerging strategies for the eco-friendly management of Agricultural Phytopathogens. Natural Bioactive Products in Sustainable Agriculture, Edit. by Singh J and Yadav AN. Springer Singapore, pp 45–66. https://doi.org/10.1007/978-981-15-3024-1_14

  • Hussain T, Khan AA (2018) Bacillus firmus Hussain T: Lab. 66: a new Biosurfactant producing bacteria for the biocontrol of late blight of potato caused by Phytophthora infestans (Mont.) de Bary. National Seminar on New Paradigms of Plant Health Management: Sustainable Food Security under Climatic Scenario from 17th Nov. to 19th Nov. 2018 at Bihar Agricultural University, Sabour (Bhagalpur), Bihar, India under Indian Phytopathological Society, Eastern Zone region Annual meeting. OP. p 60.

  • Hussain T, Khan AA (2018b) A combination of rapid and easy assays of biosurfactant producing bacteria strain isolated from automobiles repairing workshop in Aligarh. Proceedings of the Voronezh State University of Engineering Technologies, 80(3):153–163

  • Hussain T, Khan AA (2020) Bacillus subtilis HussainT-AMU and its antifungal activity against Potato black scurf caused by Rhizoctonia solani. Biocatal Agric Biotechnol 23:101433

    Google Scholar 

  • Hussain T, Khan AA (2020b) Determining the Antifungal activity and Characterization of Bacillus siamensis AMU03 against Macrophomina phaseolina (Tassi) Goid. Indian Phytopathology 73:507–516

  • Hussain T, Haris M, Shakeel A, Khan AA, Khan MA (2020c) Bio-nematicidal activities by culture filtrate of Bacillus subtilisHussainT-AMU: New promising biosurfactantbioagent for the management of Root Galling caused by Meloidogyne incognita. Vegetos 33:229–238

  • Hussain T, Khan AA (2020d) Isolation of potential biosurfactant bacteria from railway diesel engine yard soil, its PCR detection and antifungal activity Rhizoctonia solani of potato tuber. Agrica Journal 9:39–52

  • Hussain T, Khan AA, Khan MA (2021) Biocontrol of soil borne pathogen of potato tuber caused by Rhizoctonia solani through Biosurfactant based Bacillus strain. J Nepal Agric Res Coun 7:54–66

    Google Scholar 

  • Hussain T, Singh BP (2016) Molecular diagnosis of Killer pathogen of Potato: Phytophthora infestans and its, management. Current Trends in Plant Diagnostics and management practices. In: Pradeep Kumar VK, Gupta AK, Tiwari, Kamle M (eds) Springer International Switzerland. https://doi.org/10.1007/978-3-319-27312-9_1

  • Hussain T, Singh S, Danish M, Pervez R, Hussain K, Husain R (2020f) Natural Metabolites an eco-friendly approach to manage plant diseases and for better agricultural farming. Natural Bioactive Products in Sustainable Agriculture, In: Singh J, Yadav AN (eds) Springer Singapore, pp 1–13. https://doi.org/10.1007/978-981-15-3024-1

  • Jeyanthi V, Kanimozhi S (2018) Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: a review. J Pure Appl Microbiol 12:733–749

    CAS  Google Scholar 

  • Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396

    Google Scholar 

  • Kumar KVK, Reddy MS, Kloepper JW, Yellareddygari SK, Lawrence KS, Zhou XG, Sudini H, Miller M, Podile AR, Surendranatha REC, Niranjana SR, Nayaka S (2011) Plant growth-promoting activities of Bacillus subtilis MBI600 (Integral) and its compatibility with commonly used fungicides in rice sheath blight management. Int J Microbiol Res 3(2):120–130

    CAS  Google Scholar 

  • Lahlali R, Peng G, Gossen BD, McGregor L, Yu FQ, Hynes RK, Hwang SF, McDonald MR, Boyetchko SM (2013) Evidence that the biofungicide serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathol 103(3):245–254

    CAS  Google Scholar 

  • Mandal SD, Sonali, Singh S, Hussain K, Hussain T (2021) Plant Microbe Association for the mutual benefits for plant growth and soil health. In: Yadav AN, et al. (eds.), Current Trends in Microbia Biotechnology for Sustainable Agriculture, Environmental and Microbial Biotechnology, Springer Nature Singapore, pp 95–121. https://doi.org/10.1007/978-981-15-6949-4_5

  • Majeed A, Chaudhry Z, Muhammad Z (2014) Variation in the aggressiveness of Phytophthora infestans pathotypes collected from different potato fields of Khyber Pakhtunkhwa, Pakistan. Int J Agric Biol 16(4):807–812

    Google Scholar 

  • Mansour MTM, Aly AA, Habeb MM, Mohamed HI (2020) Control of cotton seedling damping-off by treating seed with inorganic salts. Gesunde Pflanzen 72:273–283

    CAS  Google Scholar 

  • Megahed AA, Dougdoug KAE, Othman BA, Lashin SM, Ibrahim MA, Sofy AR (2012) A new Egyptian satellite strain of cucumber mosaic cucumovirus. Int J Virol 8:240–257

    Google Scholar 

  • Mnif I, Ghribi D (2015) Lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129–147

    CAS  PubMed  Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2):263–272

    CAS  Google Scholar 

  • Mohamed HI, Aly AA, Mansour MTM, El-Samawaty AMA (2012) Association of oxidative stress components with resistance to flax powdery mildew. Trop Plant Pathol 37(6):386–392

    Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Freses Environ Bull 27(12):8585–8593

    CAS  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure function relationship of lipopeptide biosurfactants. Biochem Biophys Acta 1488:211–218

    CAS  PubMed  Google Scholar 

  • Nagórska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54:495–508

    PubMed  Google Scholar 

  • Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, Saidi NB, Yusof MT (2021) Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms 9:682. https://doi.org/10.3390/microorganisms9040682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    CAS  PubMed  Google Scholar 

  • O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to the study of biofilms. Methods Enzymol 310:91–109

    PubMed  Google Scholar 

  • Parthipan P, Preetham E, Machuca LL, Rahman PK, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:193. https://doi.org/10.3389/fmicb.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Protect 15:715–721

    Google Scholar 

  • Sarwar A, Hassan MN, Imran M, Iqbal M, Majeed S, Brader G, Sessitsch A, Hafeeza FY (2018a) Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res 209:1–13

    CAS  PubMed  Google Scholar 

  • Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeeza FY (2018b) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS ONE 13(6):e0198107. https://doi.org/10.1371/journal.pone.0198107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Marine Sci 37:243–250

    CAS  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin—a review. Food Technol Biotechnol 48(2):119–134

    CAS  Google Scholar 

  • Sharaf AEM, Farghal II, Sofy MR (2009) Response of broad bean and lupin plants to foliar treatment with boron and zinc. Austral J Basic Appl Sci 3:2226–2231

    CAS  Google Scholar 

  • Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resist Infect Control 8:76. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  • Siddique MAB, Fateh FS, Rehman ZU, Saleem H (2020) Black scurf of potato disease prevalence in the markets of federal capital territory, Pakistan. Pak J Agric Res 33(3):440–444

    Google Scholar 

  • Singh P, Hussain T, Patel S, Akhtar N (2018) Impact of Climate Change on Root–Pathogen Interactions. In: Giri B., Prasad R., Varma A. (eds) Root Biology. Soil Biology, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_16

  • Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020) Improving regulation of enzymatic and nonenzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules 25:2341. https://doi.org/10.3390/molecules25102341

    Article  CAS  PubMed Central  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AE-AM, Soliman AM, El-Dougdoug NK (2021a) Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 26(5):1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofy M, Mohamed H, Dawood M, Abu-Elsaoud A, Soliman M (2021b) Integrated usage of arbuscular mycorrhizal and biochar to ameliorate salt stress on spinach plants. Arch Agro Soil Sci. https://doi.org/10.1080/03650340.2021.1949709

    Article  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey EE, Mohamed HI, El-Dougdoug NK (2021c) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10(3):459. https://doi.org/10.3390/plants10030459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR (2021d) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res 28(30):40971–40991

    CAS  Google Scholar 

  • Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashvap PL, Srivastava AK, Arora DK (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Technol 22:203–217

    Google Scholar 

  • Somani AK (1986) Non-hazardous chemical control of black scurf of potato. Indian J Agric Sci 56:366–369

    CAS  Google Scholar 

  • Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B 85:174–181

    CAS  Google Scholar 

  • Vidyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Google Scholar 

  • Virgen-Calleros G, Olalde-Portugal V, Carling DE (2000) Anastomosis groups of Rhizoctonia solani on potato in central Mexico and potential for biological and chemical control. Am J Potato Res 77:219–224

    CAS  Google Scholar 

  • Wei G, Kleopper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of growth promoting rhizobacteria. Phytopathol 81:1508–1512

    Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    CAS  PubMed  Google Scholar 

  • Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, Vicente A, Pérez-García A, Teixidó N (2011) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132(4):609–619

    Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. Microbiol Methods 56(3):339–347

    CAS  Google Scholar 

  • Zaborowska M, Tillander J, Branemark R, Hagberg L, Thomsen P, Trobos M (2017) Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implant. J Biomed Mater Res B 105(8):2630–2640

    CAS  Google Scholar 

  • Zhang J, Xue Q, Gao H, Lai H, Wang P (2016) Production of lipopeptide biosurfactants by Bacillus atrophaeus 5–2a and their potential use in microbial enhanced oil recovery. Microb Cell Fact 15(1):168

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The First Author: Touseef Hussain is very thankful to Start-up Grant by SERB-Dept. of Science and Technology, New Delhi, Govt. of India, for providing the financial grants received under File No. DST-SERB-NPDF/2016/001409 and Dept. of Botany, Aligarh Muslim University, Aligarh, U.P for proving all the support, Dept. of Chemistry, for FT-IR facility.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TH: conceptualization, methodology, software. Writing- original draft preparation. Visualization, investigation. Writing- editing, corrections. AAK: supervision, HIM: revising and editing. All authors have read and approved the manuscript and ensure that this is the case.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Consent for Publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Khan, A.A. & Mohamed, H.I. Potential Efficacy of Biofilm-Forming Biosurfactant Bacillus firmus HussainT-Lab.66 Against Rhizoctonia solani and Mass Spectrometry Analysis of its Metabolites. Int J Pept Res Ther 28, 3 (2022). https://doi.org/10.1007/s10989-021-10318-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-021-10318-5

Keywords

Navigation